文章摘要
武新宇,程春田,赵鸣雁.基于并行遗传算法的新安江模型参数优化率定方法[J].水利学报,2004,35(11):0085-0090
基于并行遗传算法的新安江模型参数优化率定方法
Parameter calibration of Xinanjiang rainfall-runoff model by using parallel genetic algorithm
投稿时间:2003-10-27  
DOI:
中文关键词: 并行计算  遗传算法  参数率定  新安江模型  集群
英文关键词: parallel computation  genetic algorithm  calibration  parameter  Xinanjiang model  cluster
基金项目:国家自然科学基金(50479055)
作者单位
武新宇 大连理工大学 土木水利学院辽宁 大连 116024 
程春田 大连理工大学 土木水利学院辽宁 大连 116024 
赵鸣雁 大连理工大学 土木水利学院辽宁 大连 116024 
摘要点击次数: 2854
全文下载次数: 266
中文摘要:
      本文结合新安江模型参数的特点,以洪峰流量、峰现时间和洪水总量的合格率为评价目标,定义了评价洪水性能目标的模糊合格率,提出了新安江模型参数率定的并行遗传算法,并在微机集群环境下,利用JAVA语言进行了算法编程。串行和并行遗传算法计算结果的比较表明,本文提出的并行遗传算法可以大大缩短优化过程的时间,得到较为稳定的模型参数。
英文摘要:
      A parallel genetic algorithm (PGA) for calculation of Xinanjiang rainfall-runoff model is proposed. The algorithm evaluates the fitness function based on the definition of fuzzy qualified ratios of floods. The PGA is written in Java language and executed in a cluster of PCs. The comparison of calculation results shows that the proposed method is remarkably better than serial genetic algorithm. The time consumption for optimization is greatly reduced and the more stable parameters can be attained.
查看全文   查看/发表评论  下载PDF阅读器
关闭