文章摘要
熊建秋,李祚泳.基于支持向量机的水流挟沙力预测研究[J].水利学报,2005,36(10):1171-1175
基于支持向量机的水流挟沙力预测研究
Sediment-carrying capacity forecasting based on support vector machine
  
DOI:
中文关键词: 支持向量机;挟沙力  预测  BP神经网络
英文关键词: support vector machine  sediment-carrying capacity  forecasting  BP neural network method
基金项目:
作者单位
熊建秋 四川大学 水利水电学院四川 成都 610065 
李祚泳 成都信息工程学院四川 成都 610041 
摘要点击次数: 2375
全文下载次数: 165
中文摘要:
      本文阐述了支持向量机(SVM)的基本原理及特性,提出了基于SVM的水流挟沙力研究方法,并对30组高、中、低含沙量的水槽试验资料进行训练,训练值与实测值符合较好,再用训练好的SVM模型对4组试验数据进行了预测,预测结果与实测值相差较小。理论分析和实例结果验证了基于SVM的水流挟沙力研究方法比BP神经网络法具有更高的预测精度和可靠性。
英文摘要:
      The principle of support vector machine(SVM) is introduced and the method for forecasting sediment-carrying capacity based on this principle is proposed. The model is trained by 30 sets of experimental data with various suspension concentrations and applied to forecast another 4 sets of experimental data. The forecast is in good agreement with the measurement results. The comparison indicates that the accuracy and reliability of the proposed method are better than that of BP neural network method.
查看全文   查看/发表评论  下载PDF阅读器
关闭