王涛,杨开林,郭永鑫,霍世青.神经网络理论在黄河宁蒙河段冰情预报中的应用[J].水利学报,2005,36(10):1204-1208 |
神经网络理论在黄河宁蒙河段冰情预报中的应用 |
Application of artificial neural networks to forecasting of river ice condition |
|
DOI: |
中文关键词: 河流冰情 预报 人工神经网络 Levenberg-Marquart算法 流凌 封河 开河 水温 |
英文关键词: river ice condition forecast artificial neural networks Levenberg-Marquart algorithm ice run date freeze-up date break-up date water temperature |
基金项目: |
|
摘要点击次数: 2757 |
全文下载次数: 195 |
中文摘要: |
本文研究了以神经网络理论为核心的黄河上游宁蒙河段冰情预报。通过分析河流冰情特点,开发出了用Levenberg-Marquart算法改进传统BP神经网络理论进行冰情预报的数学模型,适用于流凌、封河、开河、水温、流凌密度、冰塞、冰坝等的预报。把该模型应用到2004~2005年冰情预报中,提前预报出2004~2005年冰情发生情况,具有良好效果。理论分析和实例论证都表明该神经网络模型能够进行宁蒙河段冰情预报。 |
英文摘要: |
The artificial neural networks (ANNs) theory is applied to establish the mathematical model for forecasting the ice condition of the Yellow River in section from Ningxia Autonomous Region to Inner Mongolia Autonomous Region. The Levenbeerg-Marquart algorithm is introduced to substitute the traditional BP algorithm to improve the computation of the model. The model can be used to forecast not only the date of ice run, freeze-up and break-up but also the temperature of water, ice flow density, ice jams as well as ice dam. The forecasted river ice condition in winter season of 2004 is in good agreement with the observation data. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |