文章摘要
柳海涛,孙双科,刘之平,王晓松.泄洪雾化预测的人工神经网络方法探讨[J].水利学报,2005,36(10):1241-1245
泄洪雾化预测的人工神经网络方法探讨
Atomization prediction based on artificial neural networks for flood releasing of high dams
  
DOI:
中文关键词: 泄洪雾化  降雨强度  人工神经网络  RBF网络  BP网络  原型观测  东江水电站
英文关键词: flood releasing atomization  precipitation  artificial neural network  Radial Basis Function network  BP network  Dongjiang Hydro Project
基金项目:
作者单位
柳海涛 中国水利水电科学研究院 水力学研究所北京 100038 
孙双科 中国水利水电科学研究院 水力学研究所北京 100038 
刘之平 中国水利水电科学研究院 水力学研究所北京 100038 
王晓松 中国水利水电科学研究院 水力学研究所北京 100038 
摘要点击次数: 2496
全文下载次数: 148
中文摘要:
      为了预测高坝泄洪雾化引起的降雨强度分布,本文提出了一种基于人工神经网络的雾化预报模型。该模型将泄洪流量、入水流速、入水角度以及三维河谷地形坐标等作为输入变量,对相应河谷地形内的雾化降雨强度分布进行预测。研究中采用了径向基函数(RBF)网络建模,并且通过在其激发函数中引入Sign-d函数,构造一种混合RBF网络,以改善模型的稳定性和泛化能力。通过东江水电站雾化原型观测资料检验,证明该网络模型在求解泄洪雾化降雨的空间分布方面是适宜而有效的。
英文摘要:
      A model based on artificial neural networked for predicting the atomization of flood releasing in high dams using flip bucket as energy dissipater is proposed. The released discharge, impinging velocity of jet, impinging angle of jet and the position of points to be studied in 3-D coordinate system are regarded as the input variables and the atomization precipitation at these points are defined as the output variable. The Radial Basis Function Network is adopted to establish the mathematical model but its activation function is setup by sigmoid function forming a kind of hybrid RBF network to promote the convergence of the model. The validity of the model is verified by the prototype observation data of rainfall distribution obtained from Dongjiang Hydro Project.
查看全文   查看/发表评论  下载PDF阅读器
关闭