文章摘要
李向阳,程春田,林剑艺.基于BP神经网络的贝叶斯概率水文预报模型[J].水利学报,2006,37(3):0354-0359
基于BP神经网络的贝叶斯概率水文预报模型
Bayesian probabilistic forecasting model based on BP ANN
  
DOI:
中文关键词: 概率水文预报  不确定性  MCMC  BP神经网络
英文关键词: Bayesian probabilistic forecast  hydrologic uncertainty  artificial neural network (ANN)  Markov chain Monte Carlo(MCMC) method
基金项目:
作者单位
李向阳 大连理工大学 土木水利学院辽宁 大连 116023 
程春田 大连理工大学 土木水利学院辽宁 大连 116023 
林剑艺 大连理工大学 土木水利学院辽宁 大连 116023 
摘要点击次数: 3428
全文下载次数: 318
中文摘要:
      本文在贝叶斯概率水文预报系统(BFS)框架之上,研究了双牌水库水文预报的不确定性,建立了流量先验分布及似然函数的BP神经网络模型,并通过Markov链Monte Carlo(MCMC)方法求解得到流量后验分布及其统计参数。通过对双牌水库历史洪水的研究结果表明,基于BP神经网络的BFS不仅显著提高了预报精度,而且为防洪决策提供了更多的信息,使得预报人员在决策中能考虑预报的不确定性,定量的估计各种决策的风险和后果。
英文摘要:
      Based on the Bayesian Forecasting System (BFS) framework, a new prior density and likelihood function model using BP artificial neural network(ANN) is developed to study the hydrologic uncertainty of the Shuangpai Reservoir, China. The Markov chain Monte Carlo method is applied to solve the posterior distribution and statistics of reservoir stage. The study result of the floods in history shows that Bayesian probabilistic forecasting model based on BP ANN not only remarkably improves the forecasting precision but also offers more information for flood control, which makes it possible for decision makers to consider the uncertainty of hydrologic forecasting during decision making and estimate the risks of different decisions quantitatively.
查看全文   查看/发表评论  下载PDF阅读器
关闭