文章摘要
陈明杰,倪晋仁,查克麦,黄国和.遗传神经网络在二维潮流特性模拟中的应用[J].水利学报,2003,34(10):0087-0095
遗传神经网络在二维潮流特性模拟中的应用
Application of genetic algorithm-based artificial neural networks in 2D tidal flow simulation
  
DOI:
中文关键词: 遗传算法  人工神经网络  二维潮流  水动力学模型
英文关键词: genetic algorithm  artificial neural networks  tidal flow  2D hydrodynamic
基金项目:
作者单位
陈明杰 北京大学环境工程系水沙科学教育部重点实验室北京 100871 
倪晋仁 北京大学环境工程系水沙科学教育部重点实验室北京 100871 
查克麦 北京大学环境工程系水沙科学教育部重点实验室北京 100871 
黄国和 北京大学环境工程系水沙科学教育部重点实验室北京 100871 
摘要点击次数: 2666
全文下载次数: 592
中文摘要:
      本文将水动力学模型与遗传神经网络方法结合,对深圳湾生态敏感点潮流的实时变化特性进行了预测。利用人工神经网络得出的模拟结果与经过实测资料验证的海湾二维潮流模型的模拟结果十分吻合,从而说明了将遗传神经网络用于二维潮流运动特征模拟的可行性。
英文摘要:
      A hybrid approach combining the 2-D hydrodynamic model for tidal flow with genetic algorithm-based artificial neural networks (GA-ANN) is presented. The site-specific knowledge and numerical results from the hydrodynamic model for several typical tidal patterns can be encapsulated in an artificial neural network and taken as the basis of the training in ANNs, which can significantly enhance the simulation speed. A case study is carried out for the real time process prediction of tidal characteristics in Deep Bay, Southern China. The GA-ANN functioned as non-linear dynamic system effectively reproduces the behaviors of the tides in the Bay for any given open boundary condition at the bay mouth. The verification results of GA-ANN are acceptable as compared with the results of numerical models.
查看全文   查看/发表评论  下载PDF阅读器
关闭