文章摘要
闵涛,周孝德,冯民权.非线性布西尼斯克方程的直线解法及渗透系数反演计算[J].水利学报,2004,35(7):0021-0025
非线性布西尼斯克方程的直线解法及渗透系数反演计算
Numerical solution of Boussinesq equation based on straight-line method and inverse calculation of permeability coefficient
  
DOI:
中文关键词: 非线性Boussinesq方程  直线法  渗透系数  正则化  迭代  龙格-库塔法
英文关键词: Boussinesq equation  straight line method  permeability coefficient  normalized iterative method  Runge-Kutta method
基金项目:
作者单位
闵涛 西安理工大学 环境科学研究所陕西 西安 710048 
周孝德 西安理工大学 环境科学研究所陕西 西安 710048 
冯民权 山西省 水利科学研究所山西 太原 030002 
摘要点击次数: 1885
全文下载次数: 110
中文摘要:
      本文提出了一种新的求解非线性Boussinesq方程正问题的数值方法。该方法利用有限差分方法把描述河渠间地下潜水非恒定流动的非线性偏微分方程转化为常微分方程,通过Runge-Kutta法求解。以此为基础,利用函数逼近及算子识别摄动法建立了渗透系数反演的正则迭代法,并给出了计算实例。其结果表明该方法具有数值精度高、稳定性好等优点。
英文摘要:
      The nonlinear Boussinesq equation describing the unsteady flow of groundwater between rivers or ditches is transformed into ordinary differential equation by using finite differential method. Then the equation is solved by means of Runge-Kutta method. On this basis, the normalized iterative method for inverse calculation of permeability coefficient is established by using approximation function and perturbation method for operator identification. Calculation example shows that this method possesses the advantages of high accuracy and stability.
查看全文   查看/发表评论  下载PDF阅读器
关闭