文章摘要
陈南祥,黄强,曹连海.基于偏最小二乘回归与神经网络耦合的岩溶泉预报模型[J].水利学报,2004,35(9):0068-0072
基于偏最小二乘回归与神经网络耦合的岩溶泉预报模型
Model for prediction of karst spring flow based on the coupling of neural network model with partial least square method
  
DOI:
中文关键词: 岩溶水系统  偏最小二乘回归  神经网络  预报模型
英文关键词: karst water  partial least square method  neural network  prediction model
基金项目:
作者单位
陈南祥 1.西安理工大学 水利水电学院陕西 西安 7100482.华北水利水电学院 岩土工程系河南 郑州 450045 
黄强 西安理工大学 水利水电学院陕西 西安 710048 
曹连海 华北水利水电学院 岩土工程系河南 郑州 450045 
摘要点击次数: 2533
全文下载次数: 195
中文摘要:
      本文将偏最小二乘回归与神经网络耦合,建立了泉流量预报模型。利用偏最小二乘法对影响岩溶泉流量的诸多因素进行分析,提取对因变量影响强的成分,从而克服了变量之间的多重相关性问题,降低了神经网络的输入维数。同时,利用神经网络建模可以较好地解决非线性问题。实例表明,本耦合模型的拟合和预报精度均优于独立使用偏最小二乘回归或神经网络建模的精度。
英文摘要:
      A model for predicting karst spring flow based on the combination of neural network and partial least square method is proposed. The factors affecting the spring discharge are analyzed by means of partial least square method to extract the most important components so that not only the problem of multi-correlation among variables can be solves but also the amount of input dimensions of the neural network can be reduced. Besides, the application of neural network helps to solve the problem of non-linearity of the model. The application example shows that the proposed model has higher precision than those models based on neural network method or partial least square method only.
查看全文   查看/发表评论  下载PDF阅读器
关闭