郑重,马富裕,李江全,崔静.基于BP神经网络的农田蒸散量预报模型[J].水利学报,2008,39(2): |
基于BP神经网络的农田蒸散量预报模型 |
Forecast model for field evaportranspiration based on BP ANN |
|
DOI: |
中文关键词: 蒸散量 BP神经网络 模型 预报 |
英文关键词: evapotranspiration back propagation artificial neural network model forecast |
基金项目: |
|
摘要点击次数: 3212 |
全文下载次数: 519 |
中文摘要: |
本文根据石河子地区多年气象资料和作物生长、土壤水分状况,建立了以平均气温、相对湿度、净辐射量以及土壤相对湿度、棉花叶面积指数为输入向量,以实测ET为输出向量的BP神经网络蒸散量预报模型(ET(bp))。实际应用结果表明所建立的BP网络模型具有较好的预报效果,平均相对误差为6.47%,预测标准误差为0.312mm,有效性指数达到93.5%。 |
英文摘要: |
The forecast model for field evaportranspiration based on BP ANN with mean temperature, relative humidity, net radiation, soil relative moisture and leaf area index regarded as the input and observed evaportranspiration as output is established according to the long term meteorological data in Shihezi, Xinjiang Autonomous, China. The application shows that the forecasting is in good agreement with the observation data with average relative error 6.47% and standard error 0.312mm, and the corresponding agreement index is about 93.5%. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|