文章摘要
霍再林,冯绍元,康绍忠,蒋静.神经网络与地下水流动数值模型在干旱内陆区地下水位变化分析中的应用[J].水利学报,2009,40(6):
神经网络与地下水流动数值模型在干旱内陆区地下水位变化分析中的应用
Application of ANN and FEFLOW model to simulate groundwater level variation in arid inland area
  
DOI:
中文关键词: 人工神经网络  FEFLOW  地下水动态  干旱内陆区
英文关键词: artificial neural network (CNN)  FEFLOW  groundwater level  dynamic variation  simulation  arid inland area
基金项目:
作者单位
霍再林 中国农业大学 中国农业水问题研究中心北京 100083 
冯绍元  
康绍忠  
蒋静  
摘要点击次数: 2773
全文下载次数: 564
中文摘要:
      建立了基于人工神经网络(ANN)和地下水流动数值模拟 (FEFLOW)的考虑动态边界的干旱内陆区地下水位动态模型(ANN_FEFLOW),并对模型进行了评价。模型中将地下水位动态边界运用ANN表征为自然条件、人类活动等多个因子非线性影响作用的结果。运用 ANN_FEFLOW模型对我国典型干旱内陆区石羊河流域民勤绿洲地下水位模拟结果表明,模型具有较高的精度,ANN_FEFLOW模型在临近动态边界区域地下水位模拟精度明显高于FEFLOW模型。相对静态边界条件区域地下水模型,ANN_FEFLOW模型能较为真实的反应边界地下水动态对区域地下水的影响。
英文摘要:
      The ANN was introduced into the FEFLOW to establish the ANN_FEFLOW model which can be used to simulate the regional dynamic variation of groundwater with the variation of groundwater level at the boundary taken into account. In the model the dynamic boundary of groundwater is characterized as the nonlinear result of the impact of multiple factors including the conditions of nature and human activities. The model is applied to simulate the groundwater variation in the Minqin Oasis located at the arid inland area of China. The result shows that the model has satisfactory precision. The further contrast analysis indicates that the precision of ANN_FEFLOW is distinctly higher than that of FEFLOW especially at the vicinity of the boundary of the region since the dynamic variation of groundwater level is taken into consideration.
查看全文   查看/发表评论  下载PDF阅读器
关闭