文章摘要
万毅.基于支持向量机的离心泵磨损特性分析方法[J].水利学报,2010,41(4):
基于支持向量机的离心泵磨损特性分析方法
Method for analyzing the wearing characteristics of centrifugal pump based on support vector machines
  
DOI:
中文关键词: 离心泵  磨损  支持向量机  优化的智能算法  非线性关系
英文关键词: centrifugal pump wear  SVM  optimized intelligent algorithm  nonlinear relation
基金项目:
作者单位
万毅 温州大学物理与电子信息工程学院浙江温州325035 
摘要点击次数: 1924
全文下载次数: 152
中文摘要:
      针对离心泵磨损机理错综复杂和高度非线性的特点,提出了基于最小二乘支持向量机的离心泵磨损特性分析方法,通过对算法的实现,建立了离心泵的磨损特性分析和几何参数优化的智能模型,模拟得到离心泵的磨损特性关系,分析了磨损随轮叶片几何参数的变化规律。与神经网络和普通支持向量机方法进行计算比较,结果表明,最小二乘支持向量机磨损预测模型得出的的平均相对误差只有0. 005%,学习速度为12 步,训练时间为1. 1s,学习速度和预测精度得到了很大的改善。可为离心泵的磨损特性分析及其抗磨可靠性设计提供新的可行方法。
英文摘要:
      An intelligent method based on the least squares support vector machine is suggested for analyzing the wearing characteristics of centrifugal pump. The corresponding model is established which can be used to analyze the relationship between wearing and geometric parameters of the impeller in pump. The mean relative error of predicted wearing of a test pump using the model based on least square support vector machine method reaches 0. 005%,which is much better than that predicted by the models based on neural network method and common support vector machine.
查看全文   查看/发表评论  下载PDF阅读器
关闭