文章摘要
陈福来,任 理.有限差分异质多尺度方法求解非饱和土壤水流问题的计算效率(Ⅰ) :数值方法[J].水利学报,2010,41(6):
有限差分异质多尺度方法求解非饱和土壤水流问题的计算效率(Ⅰ) :数值方法
Computational efficiency of finite difference heterogeneous multiscale method for unsaturated flow problems in random porous media. Numerical method
  
DOI:
中文关键词: 多孔介质  非饱和水流  有限差分异质多尺度方法
英文关键词: porous media  unsaturated flow  finite difference heterogeneous multiscale method
基金项目:
作者单位
陈福来 中国农业大学 资源与环境学院教育部植物-土壤相互作用重点实验室北京 100094) 
任 理 中国农业大学 资源与环境学院教育部植物-土壤相互作用重点实验室北京 100094) 
摘要点击次数: 2497
全文下载次数: 273
中文摘要:
      应用有限差分异质多尺度方法( FDHMM)求解以 van Genuchten-Mualem 模型或Gardner-Basha模型为本构关系的Richards方程Richards方程中的水力参数是非均质的,基于一种异质的离散格式,FDHMM在小的代表性的空间区域内求解细尺度问题,这是通过在不同的网格水平上使用不同的差分格式处理原始方程来实现的,在应用FDHMM求解Richards方程时,对于局部微观模型的求解,既考虑 Dirichlet边界也考虑周期边界为了确保所讨论的方法的有效性,在宏观水流通量的估计中运用了一些前人提出的假设和结论最后,给出了应用FDHMM求解Richards方程宏观演替的离散格式。
英文摘要:
      The finite difference heterogeneous multiscale method ( FDHMM) was extended to solve the Richards equation with the van Genuchten-Mualem model or the Gardner- Basha model.Hydraulic parameters in the Richards equation are heterogeneous. Based on a heterogeneous discretization approach the FDHMM can deal with the fine scale problems in small representative region in spatial domain,it relies on the use of two different schemes for original equation,and at different grid levels. Both the Dirichlet and the periodic boundary conditions were considered for solving the local microscopic model when the Richards equation was solved by FDHMM. Some restrictions and conclusions presented by previous researchers were applied to estimate the macroscopic flux in order to assure the efficiency of the discussed method. Lastly,a discrete scheme of macroscopic evolution was given.
查看全文   查看/发表评论  下载PDF阅读器
关闭