文章摘要
廖凯华,徐绍辉,吴吉春,施小清.一种基于PCA和ANN的土壤水力性质估计方法[J].水利学报,2012,43(3):
一种基于PCA和ANN的土壤水力性质估计方法
A method based on principal component analysis and artificial neural network for estimating soil hydraulic properties
  
DOI:
中文关键词: 田间持水量  凋萎系数  土壤转换函数  主成分  人工神经网络
英文关键词: field capacity  permanent wilting point  pedotransfer functions  principal components  artificial neural network
基金项目:
作者单位
廖凯华 南京大学水科学系江苏南京 21009 
徐绍辉 青岛大学环境科学系山东青岛 266071 
吴吉春 南京大学水科学系江苏南京 21009 
施小清 南京大学水科学系江苏南京 21009 
摘要点击次数: 1995
全文下载次数: 301
中文摘要:
      本文根据土壤基本性质,利用主成分分析和人工神经网络相结合的方法(PANN)构建了预测田间持水量和凋萎系数的土壤转换函数,并将其结果与传统的神经网络模型(ANN)进行了比较。结果表明,由于PANN 消除了神经网络输入层参数的相关性,降低了网络拓扑的复杂度,从而具有更好的预测能力。
英文摘要:
      Prediction of the field capacity and the permanent wilting point is of importance due to actual needs of hydrological model for solving large scale soil moisture problems. The aim of this study is to develop pedotransfer functions for predicting field capacity and permanent wilting point through a new methodology based on artificial neural network using principal components as inputs. The developed model is compared with artificial neural network based on the original data. The result shows that the proposed method has a better predictive ability because it eliminates the correlation of parameters in the input layer of the neural network and reduces the complexity of the network topology.
查看全文   查看/发表评论  下载PDF阅读器
关闭