文章摘要
邹强,王学敏,李安强,何小聪,罗斌.基于并行混沌量子粒子群算法的梯级水库群防洪优化调度研究[J].水利学报,2016,47(8):967-976
基于并行混沌量子粒子群算法的梯级水库群防洪优化调度研究
Optimal operation of flood control for cascade reservoirs based on Parallel Chaotic Quantum Particle Swarm Optimization
投稿时间:2015-08-17  
DOI:10.13243/j.cnki.slxb.20150873
中文关键词: 水库群  防洪优化调度  量子粒子群  混沌  多核并行计算
英文关键词: cascade reservoirs  flood control optimal operation  Quantum Particle Swarm Optimization  cha-otic search  multi-core parallel computation
基金项目:中国工程院咨询研究项目(2014-XY-24);长江勘测规划设计研究有限责任公司自主科研项目(CX2014Z11);十二五国家科技支撑计划项目(2012BAB04B05)
作者单位
邹强 长江勘测规划设计研究院, 湖北 武汉 430074 
王学敏 长江勘测规划设计研究院, 湖北 武汉 430074 
李安强 长江勘测规划设计研究院, 湖北 武汉 430074 
何小聪 长江勘测规划设计研究院, 湖北 武汉 430074 
罗斌 长江勘测规划设计研究院, 湖北 武汉 430074 
摘要点击次数: 3673
全文下载次数: 136
中文摘要:
      梯级水库群防洪优化调度问题规模庞大、结构复杂,涉及大量的决策变量和复杂的约束条件,各水库、各时段之间的水位、流量存在复杂的耦合关系,呈现出高维度、非线性、强约束特性,传统的优化方法难以直接求解或者计算效率低,存在早熟收敛问题。研究工作试图将量子粒子群算法(QPSO)引入到水库群防洪优化调度问题中,为了提高算法的全局搜索能力和收敛性能,对标准QPSO做了改进,包括利用混沌思想初始化种群、自适应激活机制和精英粒子混沌局部搜索策略3个方面,并引入多核并行计算技术以降低计算时间,提出了并行混沌量子粒子群算法(PCQPSO),函数测试证明了PCQPSO的可行性、稳定性和高效性。将PCQPSO应用到水库群防洪优化调度问题中,与POA、QPSO进行对比分析,结果表明PCQPSO收敛效率快、求解精度高,为解决梯级水库群防洪优化调度问题提供了一种有效的新思路。
英文摘要:
      The optimal operation of flood control for cascade reservoirs is a huge-scale complex nonlinear problem,involving a large number of decision variables and complicated constraints,and there are complex coupling relationship among water level and flow rate in each reservoir and each time with high dimension, nonlinear, strong constraint characteristics. Therefore, the evolution with traditional methods are difficult to directly solve or have low computational efficiency with premature convergence. This research tried to adopt Quantum Particle Swarm Optimization (QPSO) for cascade reservoirs optimal operation of flood control, and in order to improve the convergence effect and global search capability of QPSO, three improvements were presented for QPSO, such as population initialization with chaotic theory, adaptive activation mechanism and chaotic local search for elite particles. Furthermore, with the aim of reducing the computational time, a multi-core parallel computation technology was also employed. Overall, on the basis of above three improvements and multi-core parallel computation technology,Parallel Chaotic Quantum Particle Swarm Optimization (PCQPSO) was proposed in the paper. Then test function demonstrated the practicability, stability and high effectiveness of PCQPSO. Finally, the case study based on PCQPSO shows that PCQPSO is fast convergence efficiency, high precision, and the outcomes of this research based on PCQPSO offer new in-sights to carry out an efficient strategy for optimal operation of cascade reservoirs flood control.
查看全文   查看/发表评论  下载PDF阅读器
关闭