文章摘要
戈立婷,宋松柏.基于统计推断的GEV分布水文频率计算充分样本长度研究[J].水利学报,2022,53(8):1004-1016
基于统计推断的GEV分布水文频率计算充分样本长度研究
Research on sufficient sample length for calculation of hydrological frequency of GEV distribution based on statistical inference
投稿时间:2021-11-15  
DOI:10.13243/j.cnki.slxb.20211011
中文关键词: GEV分布  充分样本长度  最大似然估计  矩法  渐近正态性质  曲线拟合  正态性检验
英文关键词: GEV distribution  sufficient sample length  maximum likelihood estimation  method of moment  asymptotic normality  curve fitting  normality test
基金项目:国家自然科学基金项目(52079110)
作者单位E-mail
戈立婷 西北农林科技大学 水利与建筑工程学院, 陕西 杨凌 712100  
宋松柏 西北农林科技大学 水利与建筑工程学院, 陕西 杨凌 712100
西北农林科技大学 旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100 
ssb6533@nwafu.edu.cn 
摘要点击次数: 1417
全文下载次数: 289
中文摘要:
      针对水文频率计算样本长度的充分性问题,本文根据最大似然估计量的渐近正态性质,界定了充分样本长度的概念,将bootstrap与Shapiro-Wilk正态性检验相结合,确定给定水文序列不同设计频率计算所需的充分样本长度。该法不依赖于模型及经验法则,可避免主观因素的影响,能够应用于水文实际计算。为验证方法的可行性,选取广义极值(GEV)分布进行数值模拟分析,计算不同频率下设计值计算所需的充分样本长度na,在此基础上,选用相对置信区间(RCI)、平均相对误差(RMAE)为评定误差指标,应用曲线拟合法,定量分析不同参数、频率、参数估计方法与样本长度间的潜在关系。数值模拟结果表明:(1)通过正态性检验,验证了文中方法的合理性,采用误差指标曲线对推导结果na进行分析,在不同参数、频率下均表现出充分样本长度na规律性,论证了文中方法的正确性。(2)误差指标与样本长度表现为幂率函数关系,当样本长度达到一定样本量时,两种参数估计方法的RCI、RMAE拟合曲线出现交叉点,交叉点后最大似然估计法表现出良好的估计性能。(3)在10%~75%的频率范围内,样本长度30基本满足不同参数、不同参数估计方法下参数估计的充分条件,而在该频率范围外,充分样本长度远大于30,且重现期越大,所需样本长度越大。最后,将文中方法应用于国内8个典型径流、降水和洪峰序列,对实例计算结果进行方差分析(ANOVA)检验,进一步论证了方法的可行性。
英文摘要:
      Aiming at the sufficiency of sample length for hydrological frequency calculation,this paper defines the concept of sufficient sample length according to the asymptotic normality of maximum likelihood estimator,and combines bootstrap with Shapiro-Wilk normality test to determine the sufficient sample length required for different design frequencies of a given hydrological sequence.This method does not depend on the model and empirical rules,and can avoid the influence of subjective factors,which can be applied to hydrological calculation.In order to verify the feasibility of the method,the generalized extreme value (GEV) distribution is selected for numerical simulation analysis,and the sufficient sample length na required for the calculation of design values at different frequencies is calculated.To this end,the relative confidence interval (RCI) and the average relative error (RMAE) are selected as the evaluation error indexes,and the curve fitting method is used to analyze the potential relationship between different parameters,frequencies,parameter estimation methods and sample length.Numerical simulation results show that:(i) Through the normality test,the rationality of the method in this paper is verified.The error index curve is used to analyze the derived result na,showing the regularity of sufficient sample length na under different parameters and frequencies,which demonstrates the correctness of the method in this paper.(ii) The relationship between the error index and the sample length is a power-law function.When the sample length reaches a certain sample size,the RCI and RMAE fitting curves of the two parameter estimation methods have intersections.After the intersection,the maximum likelihood estimation method shows good estimation performance.(iii) In the frequency range of 10%-75%,under different parameters,the sample length of 30 basically satisfies the sufficient conditions for parameter estimation.Outside the frequency range,the sufficient sample length required by the moment method and the maximum likelihood estimation method is much larger than 30,and the larger the return period,the longer the sample required.Finally,the proposed method is applied to eight typical runoff,precipitation and flood peak sequences in China,and the sufficient sample length required for calculation under different frequencies and return periods is obtained.The variance analysis (ANOVA) test is carried out to further demonstrate the feasibility of the method.
查看全文   查看/发表评论  下载PDF阅读器
关闭