文章摘要
李晓晨,白音包力皋,李向东,许凤冉,穆祥鹏,董志强.基于IPSO-BP神经网络的高含沙水体对鱼类影响预测方法[J].水利学报,2023,54(3):291-301
基于IPSO-BP神经网络的高含沙水体对鱼类影响预测方法
A prediction method for the impact of hyper-concentrated flow on fishes based on the IPSO-BP neural network
投稿时间:2022-07-07  
DOI:10.13243/j.cnki.slxb.20220533
中文关键词: IPSO-BP神经网络  高含沙水流  鱼类  致死率  预测方法
英文关键词: IPSO-BP neural network  hyper-concentrated flow  fish  mortality  prediction method
基金项目:青海省基础研究计划项目(2021-ZJ-759)
作者单位E-mail
李晓晨 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038  
白音包力皋 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038 baiyin@iwhr.com 
李向东 青海省水利水电勘测规划设计研究院有限公司,青海 西宁 810001  
许凤冉 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038  
穆祥鹏 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038  
董志强 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038  
摘要点击次数: 1376
全文下载次数: 760
中文摘要:
      水库进行水力排沙时,高含沙水流过程可能会对鱼类等水生动物产生负面影响,其量化评估方法研究较为薄弱。为了预测和评估水库排沙过程对下游鱼类的影响,本文利用黄河花斑裸鲤和鲤鱼在高含沙水体中生存特性研究的实验数据,综合考虑含沙量和粒径、溶解氧、暴露时间、水温等因子对鱼类生存的影响,建立了基于IPSO-BP神经网络的高含沙水体对鱼类致死影响预测方法,对目标鱼类死亡率的预测误差小于6%。本文使用了与BP神经网络紧密耦合并引入动态参数和变异扰动的IPSO算法,较BP和PSO-BP神经网络预测能力更佳,相比国内外已有的Stress Index(SI)、Severity of Ill Effect (SEV)和多元拟合方法预测精度得到显著提升。分析表明,本文提出的预测方法能够考虑高含沙水体中鱼类生存受多环境因子联合制约,且多因子之间存在复杂关联的情况,可为评估高含沙水流过程对水生态的影响提供新的方法。
英文摘要:
      The hyper-concentrated flow process may cause negative impacts on fishes and other aquatic animals during reservoir sediment flushing.Nevertheless,there is a lack of studies on corresponding quantitative assessment methods for the degree of impact of the hyper-concentrated flow.In order to predict and evaluate the impact of reservoir sediment discharge processes on downstream fish,this paper uses experimental data from the study of survival characteristics of Yellow River Gymnocypris Eckloni and Cyprinus Carpio in hyper-concentrated flow and established an IPSO-BP neural network-based method for predicting the impact on fish mortality,and takes into account the effects of suspended sediment concentration,median particle size,dissolved oxygen,exposure time,water temperature,and other factors on fish survival.The prediction error of the target fish mortality is less than 6%.In this paper,the IPSO algorithm,which is closely coupled with BP neural network and introduces dynamic parameters and variational perturbations,has better prediction ability than BP and PSO-BP neural networks,and its accuracy is significantly improved when compared to existing Stress Index (SI),Severity of Ill Effect (SEV),and multivariate fitting evaluation methods at home and abroad.The analysis demonstrates that the prediction method proposed in this paper can account for the situation in which fish mortality in hyper-concentrated flow is governed by a combination of multiple environmental factors with complex correlations among multiple factors.This paper provides a new method for assessing the impact of hyper-concentrated flow on fishes.
查看全文   查看/发表评论  下载PDF阅读器
关闭