文章摘要
丁红,王伟泽,杨泽凡,刘欢,胡鹏.基于深度学习和信号分解的北方寒区河流开河日期预报[J].水利学报,2024,55(5):577-585
基于深度学习和信号分解的北方寒区河流开河日期预报
Forecasting break-up date of river ice in northern China based on deep learning and signal decomposition technology
投稿时间:2023-09-08  
DOI:10.13243/j.cnki.slxb.20230549
中文关键词: 河流开河日期  信号分解技术  深度学习  预报方法  北方寒区
英文关键词: break-up date of river ice  signal decomposition technology  deep learning  forecasting method  northern China
基金项目:国家重点研发计划课题(2022YFF1300902);国家自然科学基金项目(52122902,42001040);流域水循环模拟与调控国家重点实验室自主研究课题(SKL2022ZD01);中国水利水电科学研究院基本科研业务费项目(WR0145B022021)
作者单位E-mail
丁红 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038  
王伟泽 西安理工大学 土木建筑工程学院, 陕西 西安 710048  
杨泽凡 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038  
刘欢 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038  
胡鹏 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038 hp5426@126.com 
摘要点击次数: 769
全文下载次数: 416
中文摘要:
      中国北方寒区河流春季开河时易产生冰凌现象,威胁涉河水工建筑物的安全。准确地预测寒区河流开河日期可为防凌指挥、调度决策提供重要参考依据。本文基于中国北方典型寒区-黑龙江省的5个代表水文站近60年的历史开河日期序列,采用完全自适应集合经验模态分解(CEEMDAN)技术和深度学习长短期记忆模型(LSTM)方法构建河流开河日期预报的耦合模型,以期提高河流开河日期预报的精度。结果表明:本研究构建的开河日期预报耦合模型(CEEMDAN-LSTM)预测精度明显优于单一深度学习方法(LSTM)计算结果;与LSTM相比,CEEMDAN-LSTM可将开河日期预报的平均绝对误差从2.51 d降低至1.20 d,合格率从91.59%提高至100%。验证期平均绝对误差从3.85 d降低至1.65 d,合格率从88%提高至96%。因此,所构建的开河日期预报耦合模型具有较高的预报精度,可为我国北方寒区春季防凌指挥和调度提供技术支持。
英文摘要:
      Ice floods occasionally occur during river ice breaking up in northern China in spring,threatening the safety of hydraulic structures.Forecasting the break-up date of river ice(BUDRI) accurately is an important reference for anti-flooding command and dispatching decision-making during ice breaking period.For forecasting the BUDRI in northern China,the observed break-up date series of river ice of 5 representative hydrological stations in Heilongjiang province located in northern China was selected,and the Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise technology and deep learning model Long Short Term Memory(CEEMDAN-LSTM) was used to forecast the BUDRI.The results show that the forecast accuracy of CEEMDAN-LSTM,compared with LSTM,had been significantly improved with the mean absolute error reduced from 2.51 d to 1.20 d,the qualification rate increased from 91.59% to 100% in the training period.and the mean absolute error reduced from 3.85 d to 1.65 d,the qualification rate increased from 88% to 96% in the validation period.The CEEMDAN-LSTM performed well in forecasting the BUDRI in northern China,which can provide important information for command,dispatch,and decision-making of ice flood control.
查看全文   查看/发表评论  下载PDF阅读器
关闭