文章摘要
基于水荷载增量过程的高压隧洞钢筋混凝土衬砌设计方法
Design method of reinforced concrete lining for high pressure tunnel based on the water load increment process
投稿时间:2025-02-20  修订日期:2025-06-11
DOI:
中文关键词: 水工隧洞  钢筋混凝土衬砌  水荷载增量  透水衬砌  水击压力  限裂设计
英文关键词: hydraulic tunnel  reinforced concrete lining  water load increment  pervious lining  water hammer  crack-control design
基金项目:国家自然科学基金(51579194、51179140、50809051);西藏自治区清洁能源科技重大专项(XZ202201ZD0003G)
作者单位邮编
苏凯* 武汉大学水资源工程与调度全国重点实验室 430072
周鑫 武汉大学水资源工程与调度全国重点实验室 
龚睿 武汉大学水资源工程与调度全国重点实验室 
王向坤 武汉大学水资源工程与调度全国重点实验室 
胡志根 武汉大学水资源工程与调度全国重点实验室 
摘要点击次数: 110
全文下载次数: 0
中文摘要:
      水工隧洞施工开挖、衬砌完建和充水运行等工序造成了水力边界条件的有序改变,带来了水荷载的增量效应,在衬砌设计时不可忽略。本文建立了高压隧洞透水衬砌理论模型,结合静水压力和水击压力的作用特征,分别以体力与面力形式考虑荷载作用,提出了一种基于水荷载增量过程的高压隧洞钢筋混凝土衬砌设计新方法,研究了衬砌与围岩有条件联合承载机理,给出了衬砌限裂设计的优化方向。研究结果表明:基于水荷载增量过程的钢筋混凝土衬砌设计方法能够更准确地反映隧洞的承载特性,弥补了传统透水衬砌方法不能考虑水击荷载作用的不足,即忽视了水击荷载下衬砌钢筋应力、裂缝宽度二次骤升的问题等;衬砌与围岩间的结合状态是影响衬砌力学行为和结构设计的重要因素,施工完建期在外水荷载作用下衬砌脱离围岩,形成二者独立承载的状态可在衬砌结构中形成预压应力,有利于运行期衬砌结构安全;建议以提高围岩强度、降低围岩透水性为主,以降低衬砌厚度、增加配筋率为辅,实现衬砌的限裂优化设计。
英文摘要:
      The construction and excavation, lining completion, and subsequent water filling operations of hydraulic tunnels lead to orderly changes in hydraulic boundary conditions, resulting in an incremental effect of water load. This study develops a theoretical analysis model for high-pressure tunnels, combining the characteristics of hydrostatic pressure and water hammer pressure. The load effect is considered in the forms of body forces and surface forces. A reinforced concrete lining design method based on the incremental process of water load is proposed. The study investigates the conditional joint bearing mechanism between the lining and surrounding rock and provides optimization directions for the lining's crack limit design. The results show that the proposed reinforced concrete lining design method, based on the water load increment process, can more accurately reflect the tunnel's bearing characteristics, particularly in terms of the rapid increase in reinforcement stress and crack width under water hammer load, which compensates for the shortcomings of traditional pervious lining methods that do not account for water hammer effects. Additionally, the interaction between the lining and surrounding rock is a crucial factor influencing the mechanical behavior of the lining. The formation of an independent load-bearing state between the lining and surrounding rock after construction is beneficial to structural safety. In addition, the optimization design should focus on improving the strength of surrounding rock and reducing its permeability, with supplementary measures to reduce lining thickness and increase reinforcement ratio to achieve optimal crack-control design.
  查看/发表评论  下载PDF阅读器
关闭