文章摘要
基于大语言模型的水库调度知识图谱智能构建
Intelligent Construction of Reservoir Operation Knowledge Graphs Based on Large Language Models
投稿时间:2025-05-07  修订日期:2025-06-13
DOI:
中文关键词: 水库调度  知识图谱  大语言模型  知识抽取  知识驱动
英文关键词: reservoir operation  knowledge graph  large language model  knowledge extraction  knowledge-driven
基金项目:国家自然科学(52379009,52441901,U2240209);江苏省自然科学基金优秀青年基金(BK20240189);北京江河水利发展基金会—水利青年科技英才资助项目(JHYC202310);水灾害防御全国重点实验室自主研究项目(5240152E2)。
作者单位邮编
冯仲恺* 河海大学水灾害防御全国重点实验室 210098
林腾 河海大学水灾害防御全国重点实验室 
牛文静 长江水利委员会长江水文局 
肖洋 苏州科技大学环境科学与工程学院 
杨涛 河海大学水灾害防御全国重点实验室 
唐洪武 河海大学水利水电学院 
摘要点击次数: 133
全文下载次数: 0
中文摘要:
      受气候变化与人类活动双重影响,水库调度面临多源异构数据激增、知识关联性弱化等挑战,传统知识管理模式难以支撑精细化决策需求。针对水库调度知识碎片化、语义关联缺失等问题,本文提出融合大语言模型(LLM)与深度学习技术的知识图谱智能构建方法。首先,构建覆盖水文要素、工程属性、调度方法、约束条件及优化模型的多维知识体系,设计面向非结构化知识的知识抽取框架,采用动态编码文本语义特征,通过Bert-BiLSTM-CRF模型实现水库调度实体边界识别,结合注意力机制提升调度方法、调度模型等专业实体抽取效果;其次,提出基于语义角色标注与依存句法分析的关系抽取策略,建立水库调度知识冲突消解规则,解决跨文献实体对齐难题。基于国内核心期刊文献等资料构建的水库调度知识图谱包含1590个实体和922组关系,实体识别准确率、召回率分别达97.38%和97.96%,F1值较传统BiLSTM-CRF与BiLSTM-CNN模型分别提升13.29%与13.02%。应用表明,知识图谱可充分展现水库调度知识的拓扑关联,支持调度知识推理、知识问答等应用,可为流域水库群智能调度提供可扩展的知识中枢,其构建范式对水利数字孪生体系建设具有借鉴意义。
英文摘要:
      Under the combined influences of climate change and human activities, reservoir operations are increasingly challenged by the proliferation of multi-source heterogeneous data and weakened correlations within existing knowledge frameworks. As a result, traditional knowledge management models are proving inadequate for making refined, data-driven decisions. To address issues such as fragmented knowledge and semantic disconnects in reservoir operations, this study proposes a novel method for constructing a knowledge graph that integrates large language models (LLMs) with deep learning technologies. The first step involves developing a multidimensional knowledge framework that incorporates hydrological elements, engineering attributes, operational methods, constraints, and optimization models. A knowledge extraction framework for unstructured data is then designed, featuring dynamic encoding of textual semantic features. To identify entity boundaries within reservoir operation texts, the Bert-BiLSTM-CRF joint decoding approach is employed, with attention mechanisms enhancing the extraction accuracy of specialized entities such as operational methods and models. Next, a relation extraction strategy based on semantic role labeling and dependency parsing is introduced, complemented by conflict resolution rules for aligning entities across different literature sources. The resulting reservoir operation knowledge graph, built from core Chinese journal literature, includes 1,594 entities and 927 relationships. Entity recognition achieves precision, recall, and F1-scores of 97.38%, 97.94%, and 97.66%, respectively, surpassing traditional BiLSTM-CRF and BiLSTM-CNN models by 13.25% and 13.29% in F1-score. Case studies demonstrate the efficacy of the knowledge graph in visualizing topological relationships within reservoir operation knowledge. It supports applications such as knowledge reasoning and question answering, and serves as an extensible knowledge hub for the intelligent management of basin-scale reservoir systems. This methodology provides valuable insights for the development of digital twin systems in water resources management.
  查看/发表评论  下载PDF阅读器
关闭