文章摘要
深度学习驱动的大坝安全知识图谱构建方法
Deep Learning-Driven Construction Method for Dam Safety Knowledge Graph
投稿时间:2025-06-04  修订日期:2025-07-07
DOI:
中文关键词: 大坝安全  知识图谱  深度学习  预处理模型  标准规范
英文关键词: dam safety monitoring  knowledge graph  deep learning  preprocessing model  standard specifications
基金项目:国家自然科学基金面上项目(52079049);国家自然科学基金重点项目(51739003);国家重点实验室基本科研业务费(522012272)
作者单位邮编
吕国旭 河海大学 水利水电学院 210098
陈波* 河海大学 水利水电学院 210098
陆孝峰 河海大学 水利水电学院 
李松 河海大学 水利水电学院 
摘要点击次数: 20
全文下载次数: 0
中文摘要:
      将知识图谱作为外接知识库,可有效缓解大语言模型在专业领域的知识失真问题。对此,借助深度学习,提出了一种大坝安全诊断的知识图谱构建方法。该方法基于混合式框架开展双路径协同建模:模式层自顶向下设计,建立监测部位、监测仪器、监控指标、安全评判四维概念体系,运用七步法搭建了融合混凝土坝及土石坝、边坡及泄水建筑物、安全评判综合方法的领域本体;数据层自底向上生成,针对性地建立了RoMBA-CRF-Joint联合抽取模型,以RoBERTa-Mamba-BiLSTM多级特征协同与CRF-关系抽取端到端解码,实现实体—关系的联合抽取。模型从规范文本中抽取了1.1万余实体、1.3万余关系,标注准确率超过80%。最终依托Neo4j开源图数据库实现了知识图谱的可视化和语义检索,为今后大语言模型驱动的大坝安全智能诊断提供了可验证的知识基座与技术支撑。
英文摘要:
      Integrating knowledge graphs as external knowledge bases can effectively mitigate knowledge hallucination issues in large language models within specialized domains. To this end, a knowledge graph construction method for dam safety diagnosis is proposed using deep learning. A dual-path collaborative modeling approach is implemented based on a hybrid framework: the schema layer is designed top-down, establishing a four-dimensional conceptual system encompassing monitoring locations, monitoring instruments, monitoring indicators, and safety evaluation, while domain ontology integrating concrete dams, earth-rock dams, slopes, discharge structures, and comprehensive safety evaluation methods is built using the seven-step methodology; the data layer is generated bottom-up, with a targeted RoMBA-CRF-Joint joint extraction model developed. This model employs multi-level feature collaboration through RoBERTa-Mamba-BiLSTM and end-to-end decoding via CRF-relation extraction to achieve joint entity-relation extraction. The model extracted over 11,000 entities and 13,000 relations from normative texts, achieving an annotation accuracy exceeding 80%. Finally, visualization and semantic retrieval of the knowledge graph were implemented using the Neo4j open-source graph database, providing a verifiable knowledge foundation and technical support for future large language model-driven intelligent dam safety diagnosis.
  查看/发表评论  下载PDF阅读器
关闭