Page 27 - 水利学报2021年第52卷第6期
P. 27
形状、配筋和应力状态等对裂缝形态的影响,试验中应生成与真实几何形态尽可能相近的裂缝,以
便对开裂混凝土中水分的多维传输开展深入研究。(4)在荷载和环境耦合作用下,裂缝宽度、长度、
方向等参数随时间变化对水分传输规律的影响;对于非荷载因素,包括混凝土初期的自收缩和干缩
裂缝,与荷载产生的宏观裂缝形态完全不同,对混凝土内部水分和介质传输及耐久性影响较大,应
是未来研究工作的重点之一。
参 考 文 献:
[ 1 ] 穆松,刘建忠 . 基于混凝土裂缝特征的氯离子传输性质研究进展[J]. 硅酸盐学报,2015,43(6):829-838 .
[ 2 ] HOSEINI M,BINDIGANAVILE V,BANTHIA N . The effect of mechanical stress on permeability of concrete:A
review[J]. Cement and Concrete Composites,2009,31(4):213-220 .
[ 3 ] WIN P P,WATANABE M,MACHIDA A . Penetration profile of chloride ion in cracked reinforced concrete[J].
Cement and Concrete Research,2004,34(7):1073-1079 .
[ 4 ] 鲍玖文 . 持载及裂缝对混凝土中水分和氯离子传输性能的影响[D]. 大连:大连理工大学,2018 .
[ 5 ] 王海龙,金伟良,孙晓燕 . 基于断裂力学的钢筋混凝土保护层锈胀开裂模型[J]. 水利学报,2008,39(7):
863-869 .
[ 6 ] 武少赟 . 混凝土裂缝自愈合机理研究[D]. 大连:大连理工大学,2019 .
[ 7 ] 王立成,武少赟 . 混凝土劈拉开裂和裂缝自愈合机理[J]. 水利学报,2019,50(7):787-797 .
[ 8 ] SWAMY R N . Concrete technology:past,present,and future[J]. Cement and Concrete Composites,1994,16
(3):1-30 .
/
[ 9 ] PICANDET V,KHELIDJ A . Gas and water permeability of cracked concrete[C]/International Conference on
Performance of Construction Materials . Le Caire,Egypt,2003 .
[ 10] 田雪凯,王海龙,程旭东,等 . 混凝土裂缝形态参数对 Cl 传输性能影响的研究进展[J]. 中国腐蚀与防护学
-
报,2018,38(4):309-316 .
[ 11] 朱承龙,蒋林华,李炜,等 . 裂缝对混凝土中氯离子传输的影响的研究进展[J]. 混凝土,2014(5):19-22,
26 .
[ 12] 李乐 . 含随机裂纹网络孔隙材料的渗透性研究[D]. 北京:清华大学,2015 .
[ 13] BISSCHOP J,MIER J G M V . How to study drying shrinkage microcracking in cement-based materials using opti⁃
cal and scanning electron microscopy?[J]. Cement and Concrete Research,2002,32(2):279-287 .
[ 14] ZHOU C S,LI K F,PANG X Y . Geometry of crack network and its impact on transport properties of concrete
[J]. Cement and Concrete Research,2012,42(9):1261-1272 .
[ 15] BERROCAL C G,LÖFGREN I,LUNDGREN K,et al . Characterisation of bending cracks in R/FRC using image
analysis[J]. Cement and Concrete Research,2016,90:104-116 .
[ 16] LI Y,ZHANG Y,YANG E H,et al . Effects of geometry and fraction of polypropylene fibers on permeability of
ultra-high performance concrete after heat exposure[J]. Cement and Concrete Research,2019,116:168-178 .
[ 17] LANDIS E N,NAGY E N . Three-dimensional work of fracture for mortar in compression[J]. Engineering Frac⁃
ture Mechanics,2000,65(2):223-234 .
[ 18] LANDIS E N . Damage variables based on three-dimensional measurements of crack geometry[J]. Strength,Frac⁃
ture and Complexity,2005,3(2):163-173 .
[ 19] FAN L F,GAO J W,WU Z J,et al . An investigation of thermal effects on micro-properties of granite by X-ray
CT technique[J]. Applied Thermal Engineering,2018,140:505-519 .
[ 20] ISAKA B A,RANJITH P,RATHNAWEERA T,et al . Quantification of thermally-induced microcracks in gran⁃
ite using X-ray CT imaging and analysis[J]. Geothermics,2019,81:152-167 .
[ 21] WANG Y,LI C H,HAO J,et al . X-ray micro-tomography for investigation of meso-structural changes and
crack evolution in Longmaxi formation shale during compressive deformation[J]. Journal of Petroleum Science
and Engineering,2018,164:278-288 .
[ 22] YANG Y S,YANG C M,HUANG C W . Thin crack observation in a reinforced concrete bridge pier test using im⁃
age processing and analysis[J]. Elsevier Science Ltd . 2015,83:99-108 .
— 655 —