Page 73 - 2023年第54卷第10期
P. 73
2022,41(7):47 - 60.
[24] LM,RENB,WUB,etal.Aparametric3Dgeologicalmodelingmethodconsideringstratigraphicinterfaceto
pologyoptimizationandcodingexpertknowledge[J].EngineeringGeology,2021,293:1 - 17.
[25] 闵恺艺.基于多测点模型的面板堆石坝沉降变形预测研究[D].西安:西安理工大学,2021.
[26] 赵征,冯事 成,宋 梅 雯,等.基 于 XGBoost的 航 空 器 动 态 滑 行 时 间 预 测 方 法 研 究 [J].航 空 工 程 进 展,
2022,13(1):76 - 85.
[27] 李浩维.基于改进 WOA优化参数的 XGBoost入侵检测模型[D].沈阳:辽宁大学,2022.
[28] 王涛.非线性权重和柯西变异的蝗虫算法[J].微电子学与计算机,2020,37(5):82 - 86.
[29] 王龙达,王兴成,刘罡.基于角度惩罚距离的收敛因子非线性递减多目标鲸鱼优化改进算法[J].计算机
应用研究,2022,39(5):1395 - 1401.
[30] ZHANGY,ZHOUX,SHIH PC.ModifiedHarrisHawksoptimizationalgorithm forglobaloptimizationproblems
[J].ArabianJournalforScienceandEngineering,2020,45(12):10949 - 10974.
[31] 周挺,杨军,詹祥 澎,等.一 种 数 据 驱 动 的 暂 态 电 压 稳 定 评 估 方 法 及 其 可 解 释 性 研 究 [J].电 网 技 术,
2021,45(11):4416 - 4425.
[32] 赵晓华,亓航,姚莹,等.基于可解释机器学习框架的快速路立交出口风险预测及致因解析[J].东南大
学学报(自然科学版),2022,52(1):152 - 161.
[33] SHAPLEYLS.Avalueforn - personsgames[J].AnnalsofMathematicsStudies,1953,28(7):307 - 318.
[34] 陈萌.基于 ICU临床数据的脓毒症早期预测算法及其可解释性研究[D].南京:东南大学,2021.
IAO- XGBoostensemblelearningmodelforseepagebehavioranalysisof
earth - rockdam andinterpretationofpredictionresults
YUHongling,WANGXiaoling,RENBingyu,ZHENGMingwei,WUGuohua,ZHUKaixuan
(StateKeyLaboratoryofHydraulicEngineeringSimulationandSafety,TianjinUniversity,Tianjin 300072,China)
Abstract:Inviewoftheproblemsoflowcomputationalefficiencyanddifficultyinreal - timeanalysisofdamseep
agebehaviorintheexistingseepagenumericalsimulationmethodsofearth - rockdam,andtheproblemsofpoorin
terpretabilityoftheexistingsurrogatemodelbasedonmachinelearningalgorithm ,anIAO- XGBoostensemble
learningmodelforseepagebehavioranalysisofearth - rockdamisproposed ,andthepredictedresultsareexplained
basedontheSHapleyAdditiveexPlanation(SHAP)theory.Onthebasisofusingmulti - geologicalbodyautomatic
modelingmethodandCFDtechnologytocalculateandanalyzetheseepagefieldofthedam,thehyper - parameters
suchasn_estimators,max_depthandlearning_rateoftheeXtremeGradientBoosting(XGBoost) ensemble
learningalgorithmwereoptimizedbytheImprovedAquilaOptimization(IAO)algorithm.Thenapredictionmodel
ofseepagebehaviorindexofdambasedonIAO - XGBoostensemblelearningalgorithmwasestablishedtorevealthe
complexnonlinearmappingrelationshipbetweentheinputcharacteristicvariablessuchastheupstream anddown
streamwaterlevelandpermeabilitycoefficientsofdamfoundationandthesimulatedvalueofseepagebehaviorin
dex.Furthermore ,theIAO- XGBoostensemblelearningalgorithm wascombinedwiththeexplainablemachine
learningframeworkSHAPtheorytoexcavatethekeyfeaturesaffectingthepredictionresultsofthedamseepagebe
haviorindex ,andexplaintheinfluenceofthecharacteristicvariablesonthepredictionresults.Thecasestudy
showsthattheIAO - XGBoostensemblelearningalgorithmhashighpredictionaccuracy.ComparedwithIAO - GB
DT ,IAO - RF,IAO - DTandIAO - SVRalgorithms,thepredictionaccuracyofIAO - XGBoostensemblelearning
algorithm increasesby0.52%, 11.64%, 37.21% and 25.07%, respectively.Compared with thefeature
importanceanalysismethodsofIAO - XGBoost ,IAO - GBDTandIAO - RFalgorithms,SHAPtheoryhasstronger
modelinterpretabilityandimprovethereliabilityofthepredictionresults.
Keywords:earth - rockdam;seepagebehavioranalysis; XGBoost; interpretability; SHAP theory; improved
Aquilaoptimizationalgorithm
(责任编辑:李福田)
2
— 1 0 9 —