Page 130 - 2022年第53卷第6期
P. 130

2021,2(5):1 - 4.
                [20] 王俊凯,乔非,祝军,等.基于支持向量机的烧结能耗及性能指标预测模型[J].同济大学学报(自然科学
                       版),2014,42(8):1256 - 1260.
                [21] CHOK,VANMERRI?NBOERB,GULCEHREC,etal.LearningphraserepresentationsusingRNNencoder - de
                       coderforstatisticalmachinetranslation [J].arXive - prints,2014,arXiv:1406.1078.
                [22] 姚德臣,李博阳,刘恒畅,等.基于注意力 GRU算法的滚动轴承剩余寿命预测[J].振动与冲击,2021,
                      40(17):116 - 123.
                [23] 毕扬,郑波,张亚武,等.基于 MIC与 BiGRU的水电机组振动趋势预测 [J].水利学报,2021,52(5):
                      612 - 621.
                [24] HUANGS,TANGJ,DAIJ,etal.Signalstatusrecognitionbasedon1DCNNanditsfeatureextractionmechanism
                       analysis [J].Sensors,2019,19(9):2018.
                [25] ZHUANGZ,DINGJ,TANAC,etal.FaultdetectionofHigh - Speedtrainwheelsetbearingbasedonimpulse -
                       envelopemanifold [J].ShockandVibration,2017,2017:2104720.
                [26] SHIJ,DINGZ,LEEWJ,etal.HybridforecastingmodelforVery - Shortterm windpowerforecastingbasedon
                       greyrelationalanalysisandwindspeeddistributionfeatures [J].IEEETransactionsonSmartGrid,2014,5(1):
                      521 - 526.
                [27] HUANGC,WANGL.Gaussianprocessregression - basedmodellingoflithium - ionbatterytemperature - dependent
                       open - circuit - voltage [J].ElectronicsLetters,2017,53(17):1214 - 1216.
                [28] GAOW,KARBASIM,HASANIPANAH M,etal.DevelopingGPRmodelforforecastingtherockfragmentation
                       insurfacemines [J].EngineeringwithComputers,2018,34(2):339 - 345.



                        Degradationtrendassessmentandpredictionofpumpedstorageunitbasedon
                              deepauto - encodercompressionandmultiscalefeatureextraction

                                                                     2
                                 1
                                                                                                  1
                                            1
                                                         2
                                                                                    3
                      CHENPeng,WUYifan,CAIShuang,YANGBin,ZHANGHaiku,LIChaoshun
                     (1.SchoolofCivilandHydraulicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan 430074,China;
                                  2.DatangTibetEnergyDevelopmentCompanyLimited,Chengdu 610072,China;
                            3.DatangHydropowerScience&TechnologyResearchInstituteCo.,Ltd.,Chengdu 610074,China)
                  Abstract:Theharshoperatingenvironmentbringschallengestothesafeoperationofthepumpedstorageunit
                  (PSU).ThedegradationtrendassessmentandpredictionofPSUcaneffectivelyreflectoperationstateoftheunit.
                  However ,thereisalargeamountofredundantandinterferinginformationinoperatingparametersoftheunit,
                  whichseriouslyaffectsthereliabilityoftheassessment.Besides,itishardtoachieveaccuratepredictionforcom
                  plexdegradationtrendsequences.Tosolveaboveproblems ,adegradationtrendassessmentandpredictionmodel
                  ofPSUisproposedonthebasisofdeepauto - encodercompressionandmultiscalefeatureextraction.Firstly,the
                  healthymodelisbuiltusingdeepauto - encoder(DAE)andmultilayerperceptron(MLP)toreducethefittinger
                  ror ,whereDAE isadoptedtocondensethecriticalinformation.Secondly,thedegradationtrendisgenerated
                  basedonthehealthymodel.Finally,amultiscalefeatureextractionnetworkisconstructedbycombiningthead
                  vantagesofone - dimensionalconvolutionalneuralnetwork(1DCNN)andbi - directionalgatedrecurrentunit(BiG
                  RU )fortheaccurateprediction.Comparedwithothermodels,theproposedhealthymodelachievedthelowestfit
                  tingerrorandthemultiscalefeatureextractionnetworkhasthehighestpredictionaccuracy.
                  Keywords:pumpedstorageunit;degradationtrendassessmentandprediction;deepauto - encoder(DAE);
                  multiscalefeatureextraction;one - dimensionalconvolutionalneuralnetwork(1DCNN);bi - directionalgatedre
                  currentunit (BiGRU)


                                                                                    (责任编辑:王 婧)





                —  7 5  —
                     6
   125   126   127   128   129   130   131   132