Page 59 - 2023年第54卷第7期
P. 59
1869 - 1875.
[34] VASWANIA,SHAZEERN,PARMARN,etal.Attentionisallyouneed[Z].arXiv,2017.
[35] HUANGH,TANGQ,LIUZ.AdaptivecorrectionforecastingapproachforurbantrafficflowbasedonfuzzyC -
meanclusteringandadvancedneuralnetwork[J].JournalofAppliedMathematics,2013,2013(1):1 - 7.
[36] LIT,QIANZ,HET.Short - Term loadforecastingwithimprovedCEEMDAN andGWO - Basedmultiplekernel
ELM[J].Complexity,2020.doi:10.1155?2020?1209547.
GroutingflowhybridpredictionmodelbasedonCEEMDAN - Transformer
LIKai,RENBingyu,WANGJiajun,GUANTao,YUJia
(StateKeyLaboratoryofHydraulicEngineeringSimulationandSafety,TianjinUniversity,Tianjin300072,China)
Abstract:Groutingflowisoneofthemostimportantgroutingparametersofhydraulicengineering.Theabnormal
constructionconditioncanbefoundbytheeffectivegroutingflowpredictiontoguaranteetheconstructionqualityand
safety.However ,thegeologicalconditioniscomplexandgroutingflowdatahasthefeaturesofstrongnonlinearity
andvolatility,thereforethepredictionprecisionisunsatisfied.Theshortcomingsoftheexistinggroutingflowpre
dictionareasfollows :thetraditionalneuralnetworkmodelisinsufficientinfeatureextraction,resultinginunsatis
fiedpredictionprecision ;thetraditionalneuralnetworkmodelcalculatesoneresultbyonecalculation,multiple
timesteppredictionrequirescomplexmultiplecalculations;thepredictiontimeofonepointisshortandthepredic
tionresultcannotreflectthetotaltrendofgroutingflowsequence ,thereforeitisnotbeneficialtocontrolgrouting
flowandguaranteeconstructionquality.Forthoseproblems ,thisresearchproposesthegroutingflowhybridpredic
tionmodelbasedonCEEMDAN - Transformer.Thegroutingflowisdecomposedtoeigenmodefunctionandresidual
signalbasedonCompleteEnsembleEmpiricalModeDecompositionwithAdaptiveNoise(CEEMDAN),andthe
problemsofstrongnonlinearityandvolatilityaresettled.ThesequencepredictionofIntrinsicModeFunction (IMF)
isrealizedusingmulti - headattentionTransformer,andthetotaldependencybetweeninputdataandoutputdatais
establishedusingmulti - headattentionmethod.Thismethodiseffectiveinextractingdynamictemporalfeaturesand
improvingtheextractingquality.Finally ,thegroutingflowpredictionmodelwithmulti - inputandmulti - outputis
establishedtoimprovethecalculationefficiency ,providingthereferenceforgroutingflowcontrol.Theproposed
CEEMDAN - Transformermodelhasbettercalculationaccuracyandefficiencyingroutingflowprediction.
Keywords:groutingflow prediction; completeensembleempiricalmodedecompositionwithadaptivenoise;
Transformeralgorithm;attentionalgorithm;sequencetosequence
(责任编辑:李福田)
— 8 1 7 —