Page 58 - 2023年第54卷第7期
P. 58
neeringGeology,2004,75(1):1 - 14.
[11] TANGL,WU Y,YU L.A non - iterativedecompositionensemblelearningparadigm usingRVFLnetworkfor
crudeoilpriceforecasting [J].AppliedSoftComputing,2018,70:1097 - 1108.
[12] LIUH,TIANH,PAND,etal.Forecastingmodelsforwindspeedusingwavelet,waveletpacket,timeseries
andArtificialNeuralNetworks [J].AppliedEnergy,2013,107:191 - 208.
[13] HONGW,FANG.Hybridempiricalmodedecompositionwithsupportvectorregressionmodelforshortterm load
forecasting [J].Energies,2019,12(6):1093.
[14] KABIRM,SHAHNAZC.DenoisingofECGsignalsbasedonnoisereductionalgorithmsinEMDandwaveletdo
mains [J].BiomedicalSignalProcessingandControl,2012,7(5):481 - 489.
[15] ZHAOH,ZHENGJ,XUJ,etal.Faultdiagnosismethodbasedonprincipalcomponentanalysisandbroadlearn
ingsystem [J].IEEEAccess,2019,7:99263 - 99272.
[16] LIT,YANG M, WU J, etal.A novelimageencryptionalgorithm basedonafractional - orderhyperchaotic
system andDNAcomputing[J].Complexity,2017.doi:10.1155?2017?9010251.
[17] BAOW,YUEJ,RAOY,etal.Adeeplearningframeworkforfinancialtimeseriesusingstackedautoencoders
andlong - shortterm memory[J].PLoSONE,2017,12(7):e0180944.
[18] YZAB,YUANZ,CKA,etal.AnewpredictionmethodbasedonVMD - PRBF - ARMA - Emodelconsidering
windspeedcharacteristic [J].EnergyConversionandManagement,2020,203:112254.
[19] LIANGY,NIUD,HONGW.Shorttermloadforecastingbasedonfeatureextractionandimprovedgeneralregres
sionneuralnetworkmodel [J].Energy,2019,166(1):653 - 663.
[20] HUANGN,SHENZ,LONGS,etal.TheempiricalmodedecompositionandtheHilbertspectrum fornonlinear
andnon - stationarytimeseriesanalysis[J].ProceedingsMathematicalPhysical& EngineeringSciences,1998,
454(1971):903 - 995.
[21] MIX,LIUH,LIY.Windspeedpredictionmodelusingsingularspectrumanalysis,empiricalmodedecomposition
andconvolutionalsupportvectormachine [J].EnergyConversionandManagement,2019,180:196 - 205.
[22] FU W, WANG K, TAN J, etal.A composite framework coupling multiple feature selection, compound
predictionmodelsandnovelhybridswarm optimizer - basedsynchronizationoptimizationstrategyformulti - step
aheadshort - term windspeedforecasting [J].EnergyConversionandManagement,2020,205:112461.
[23] ZHANGY,YAN B, AASMA M.A noveldeeplearningframework: Predictionandanalysisoffinancialtime
seriesusingCEEMDandLSTM[J].ExpertSystemswithApplications,2020,159:113609.
[24] WANGB,WANGJ.Deepmulti - hybridforecastingsystem withrandom EWTextractionandvariationallearning
ratealgorithm forcrudeoilfutures [J].ExpertSystemswithApplications,2020,161:113686.
[25] REICHSTEINM,CAMPSVALLSG,STEVENSB,etal.Deeplearningandprocessunderstandingfordata -driv
enEarthsystem science[J].Nature,2019,566(7743):195 - 204.
[26] RAHMANA,SRIKUMARV,SMITH A.Predictingelectricityconsumptionforcommercialandresidentialbuild
ingsusingdeeprecurrentneuralnetworks[J].AppliedEnergy,2018,212:372 - 385.
[27] XIANGZ,YANJ,DEMIRI.A rainfall - runoffmodelwithLSTM- basedsequence - to - sequencelearning[J].
WaterResourcesResearch,2020.doi:10.1029?2019WR025326.
[28] 刘擘龙,张宏立,王聪,等.基于序列到序列和注意力机制的超短期风速预测 [J].太 阳 能 学 报,2021,
42(9):286 - 294.
[29] 杜圣东,李天瑞,杨燕,等.一种基于序列到序列时空注意力学习的交通流预测模型[J].计算机研究与
发展,2020,57(8):1715 - 1728.
[30] 刘明辉,王晓玲,王佳俊,等.土石坝料压实特性改进多输出预测模型研究 [J].水 力 发 电 学 报,2022,
41(1):63 - 73.
[31] CHENW,WANGX,WANGJ,etal.Dynamicinterpretationofthefactorscausingdamdeformationwithhybrid
greydynamicincidencemodel [J].EngineeringStructures,2021,242:112482.
[32] SUTSKEVERI, VINYALSO, LE Q.Sequencetosequencelearningwith neuralnetworks[C]??NIPS.MIT
Press,2014.
[33] 杨磊,赵红东,于快快.基于多头 注 意 力 机 制 的 端 到 端 语 音 情 感 识 别 [J].计 算 机 应 用,2022,42(6):
— 8 1 —
6