Page 146 - 2025年第56卷第1期
P. 146

参  考  文  献:



                [ 1 ]  邓韶辉. 大坝基础灌浆 CFD 模拟与预测研究[D]. 天津: 天津大学, 2018.
                [ 2 ]  DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language un⁃
                      derstanding[J∕OL]. ArXiv, (2019-05-24)[2023-12-20]. https:∕∕arxiv.org∕abs∕1810.04805.
                [ 3 ]  RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre -
                      training[J∕OL]. OpenAI Blog, (2018-06-11)[2023-11-11]. https:∕∕www.mikecaptain.com∕resources∕pdf∕GPT-
                       1.pdf.
                [ 4 ]  RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J∕OL]. OpenAI
                      Blog, (2019-02-14)[2023-12-11]. https:∕∕insightcivic.s3.us-east-1.amazonaws.com∕language-models.pdf.
                [ 5 ]  BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in Neural Infor⁃
                      mation Processing Systems, 2020, 33: 1877-1901.
                [ 6 ]  SINGHAL K, AZIZI S, TU T, et al. Large language models encode clinical knowledge [ J]. Nature, 2023,
                      620: 172-180.
                [ 7 ]  CHOWDHERY A, NARANG S, DEVLIN J, et al. Palm: Scaling language modeling with pathways[J]. Journal
                      of Machine Learning Research, 2023, 24(240): 1-113.
                [ 8 ]  WEI J, BOSMA M, ZHAO V Y, et al. Finetuned language models are zero - shot learners [ J∕OL]. ArXiv,
                      (2022-02-08)[2023-12-20]. https:∕∕arxiv.org∕abs∕2109.01652.
                [ 9 ]  LIU Q, SONG J K, HUANG Z G, et al. Langchain-chatchat[ CP∕OL]. Github Repository, (2023- 04- 15)
                      [2023-12-11]. https:∕∕github.com∕chatchat-space∕Langchain-Chatchat.
                [ 10 ]  覃思中, 郑哲, 顾燚, 等. 大语言模型在建筑工程中的应用测试与讨论[J]. 工业建筑, 2023, 53(9):
                      162-169.
                [ 11 ]  UDDINS M J, ALBERT A, OVID A, et al. Leveraging ChatGPT to aid construction hazard recognition and
                      support safety education and training[J]. Sustainability, 2023, 15(9): 7121.
                [ 12 ]  杨阳蕊, 朱亚萍, 刘雪梅, 等. 水利工程文本中抢险实体和关系的智能分析与提取[J]. 水利学报, 2023,
                      54(7): 818-828.
                [ 13 ]  杨阳蕊, 朱亚萍, 陈思思, 等. 融合群体智能策略的 AI 链在大坝防汛抢险知识推理中的应用[J]. 水利学

                      报, 2023, 54(9): 1122-1132.
                [ 14 ]  冯钧, 吕志鹏, 范振东, 等. 基于大语言模型辅助的防洪调度规则标签设计方法[J]. 水利学报, 2024,
                      55(8): 920-930.
                [ 15 ]  HU E J, SHEN Y, WALLIS P, et al. Lora: Low - rank adaptation of large language models[ J∕OL]. ArXiv,
                      (2021-10-16)[2023-04-11]. https:∕∕arxiv.org∕abs∕2106.09685.
                [ 16 ]  JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications
                      [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
                [ 17 ]  TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMa: Open and efficient foundation language models[J∕OL].
                      ArXiv, (2023-02-27)[2024-02-01]. https:∕∕doi.org∕10.48550∕arXiv.2302.13971.
                [ 18 ]  XU C, SUN Q, ZHENG K, et al. Wizardlm: Empowering large language models to follow complex instructions
                      [J∕OL]. ArXiv, (2023-06-10)[2024-02-02]. https:∕∕arxiv.org∕abs∕2304.12244.
                [ 19 ]  WANG Y, ZHONG W, LI L, et al. Aligning large language models with human: A survey [ J∕OL]. ArXiv,
                      (2023-02-27)[2024-02-01]. https:∕∕arxiv.org∕abs∕2302.13971.
                [ 20 ]  中国电力企业联合会, 水工建筑物水泥灌浆施工技术规范: DL∕T 5148—2021 [ S]. 北京: 国家能源
                      局, 2021.
                [ 21 ]  中国电力企业联合会, 水工建筑物水泥灌浆施工技术规范: DL∕T 5148—2012 [ S]. 北京: 国家能源
                      局, 2012.
                [ 22 ]  杨飞, 宋吉星, 王宜春, 等. 基于 OCR 识别技术的碎片化时空信息库异常文件检测方法[J]. 武汉理工大
                      学学报(信息与管理工程版), 2023, 45(6): 967-971.
                [ 23 ]  WANG Y, KORDI Y, MISHRA S, et al. Self-instruct: Aligning language model with self-generated instructions
                                                                                               —   1 4 1  —
   141   142   143   144   145   146   147   148   149   150