Page 126 - 2022年第53卷第9期
P. 126
cationtofaultdiagnosisofrollingbearing[J].IEEEAccess,2019,7:47663 - 47673.
[32] AZAMIH,FERNANDEZA,ESCUDEROJ.Multivariatemultiscaledispersionentropyofbiomedicaltimesseries
[J].Entropy,2019,21(9):913.
[33] ZHENGJD,TUDY,PANH Y,etal.Arefinedcompositemultivariatemultiscalefuzzyentropyandlaplacian
score - basedfaultdiagnosismethodforrollingbearings [J].Entropy,2017,19(11):585.
[34] AHMEDM U,CHANWIMALUEANG T,THAYYILS,etal.A multivariatemultiscalefuzzyentropyalgorithm
withapplicationtouterineEMGcomplexityanalysis[J].Entropy,2017,19(1):2.
Afaultdiagnosismethodforshaftsystem ofhydropowerunitsbasedonimproved
symbolicdynamicentropyandstochasticconfigurationnetwork
1
1
2
1
1
1
CHENFei,WANGBin,ZHOUDongdong,ZHAOZhigao,DINGChen,CHENDiyi
(1.CollegeofWaterResourcesandArchitecturalEngineering,NorthwestA&FUniversity,Yangling 712100,China;
2.StateKeyLaboratoryofWaterResourcesandHydropowerEngineeringScience,WuhanUniversity,Wuhan 430072,China)
Abstract:Theexistingresearchonshaftingfaultdiagnosisofhydropowerunitsismainlybasedonthevibrationsig
naldataofasinglesensor.Therearesomeproblemssuchaslackoffaultinformationanddifficultinselectingsen
sormeasurementpoints.Therefore , a shafting faultdiagnosismethod forhydropowerunitsbased on the
combinationofrefinedcompositemultivariatemultiscalesymbolicdynamicentropy(RCMMSDE)andstochastic
configurationnetwork(SCN)isproposedinthispaper.First,therefinedcompositetechniqueisintroducedinto
RCMMSDEmodeltoimprovetheproblemofinsufficientcoarse - grainingoftraditionalmultivariatemultiscaleentro
py.Then,theRCMMSDEvaluesofvibrationsignalsfromdifferentsensorsareextractedasfaultfeatures.Finally,
thefaultfeaturesareinputintoSCNnetworktorealizetheaccurateshaftingfaultidentificationofhydropowerunits.
Simulationresultsshow thattheRCMMSDE - SCN modelachievesthehighestdiagnosticratesof97.58% and
99.17% ontwodifferentdatasetsrespectively ,whichverifiesthegooddiagnosticperformanceoftheproposedmod
el.Atthesametime ,thediagnosisperformanceofdifferentdiagnosismodelsunderdifferentscenariosofmultiple
sensorsignalsandsinglesensorsignalsiscompared ,whichindicatesthatthefusionofmultiplevibrationsignals
caneffectivelyimprovetheidentificationperformanceofhydropowerunitshaftingfaultdiagnosismodel.Thisstudy
providesanewmethodformulti - sensorvibrationsignalsofhydropowerunits ,andhasgoodreferencevalue.
Keywords:hydropowerunits;faultdiagnosis;multivariatemultiscalesymbolicdynamicentropy;stochasticcon
figurationnetwork ;featureextraction
(责任编辑:王 婧)
1
— 1 3 9 —