Page 126 - 2022年第53卷第9期
P. 126

cationtofaultdiagnosisofrollingbearing[J].IEEEAccess,2019,7:47663 - 47673.
                [32] AZAMIH,FERNANDEZA,ESCUDEROJ.Multivariatemultiscaledispersionentropyofbiomedicaltimesseries
                       [J].Entropy,2019,21(9):913.
                [33] ZHENGJD,TUDY,PANH Y,etal.Arefinedcompositemultivariatemultiscalefuzzyentropyandlaplacian
                       score - basedfaultdiagnosismethodforrollingbearings [J].Entropy,2017,19(11):585.
                [34] AHMEDM U,CHANWIMALUEANG T,THAYYILS,etal.A multivariatemultiscalefuzzyentropyalgorithm
                       withapplicationtouterineEMGcomplexityanalysis[J].Entropy,2017,19(1):2.



                      Afaultdiagnosismethodforshaftsystem ofhydropowerunitsbasedonimproved
                               symbolicdynamicentropyandstochasticconfigurationnetwork

                                                                                       1
                                                            1
                                                                          2
                              1
                                                                                                   1
                                          1
                     CHENFei,WANGBin,ZHOUDongdong,ZHAOZhigao,DINGChen,CHENDiyi
                       (1.CollegeofWaterResourcesandArchitecturalEngineering,NorthwestA&FUniversity,Yangling 712100,China;
                    2.StateKeyLaboratoryofWaterResourcesandHydropowerEngineeringScience,WuhanUniversity,Wuhan 430072,China)
                  Abstract:Theexistingresearchonshaftingfaultdiagnosisofhydropowerunitsismainlybasedonthevibrationsig
                  naldataofasinglesensor.Therearesomeproblemssuchaslackoffaultinformationanddifficultinselectingsen
                  sormeasurementpoints.Therefore , a shafting faultdiagnosismethod forhydropowerunitsbased on the
                  combinationofrefinedcompositemultivariatemultiscalesymbolicdynamicentropy(RCMMSDE)andstochastic
                  configurationnetwork(SCN)isproposedinthispaper.First,therefinedcompositetechniqueisintroducedinto
                  RCMMSDEmodeltoimprovetheproblemofinsufficientcoarse - grainingoftraditionalmultivariatemultiscaleentro
                  py.Then,theRCMMSDEvaluesofvibrationsignalsfromdifferentsensorsareextractedasfaultfeatures.Finally,
                  thefaultfeaturesareinputintoSCNnetworktorealizetheaccurateshaftingfaultidentificationofhydropowerunits.
                  Simulationresultsshow thattheRCMMSDE - SCN modelachievesthehighestdiagnosticratesof97.58% and
                  99.17% ontwodifferentdatasetsrespectively ,whichverifiesthegooddiagnosticperformanceoftheproposedmod
                  el.Atthesametime ,thediagnosisperformanceofdifferentdiagnosismodelsunderdifferentscenariosofmultiple
                  sensorsignalsandsinglesensorsignalsiscompared ,whichindicatesthatthefusionofmultiplevibrationsignals
                  caneffectivelyimprovetheidentificationperformanceofhydropowerunitshaftingfaultdiagnosismodel.Thisstudy
                  providesanewmethodformulti - sensorvibrationsignalsofhydropowerunits ,andhasgoodreferencevalue.
                  Keywords:hydropowerunits;faultdiagnosis;multivariatemultiscalesymbolicdynamicentropy;stochasticcon
                  figurationnetwork ;featureextraction


                                                                                    (责任编辑:王 婧)




























                                                                                                   1
                                                                                              —   1 3 9 —
   121   122   123   124   125   126   127   128   129   130   131