Page 70 - 2023年第54卷第7期
P. 70

OL].(2022 - 04 - 21)[2022 - 06 - 17].https:??arxiv.org?abs?2204.10019.
                [26] KENTONJDM W C,TOUTANOVALK.Bert:Pre - trainingofdeepbidirectionaltransformersforlanguageun
                       derstanding [C]??ProceedingsofnaacL - HLT.2019.
                [27] WEIJ,ZOUK.Eda:Easydataaugmentationtechniquesforboostingperformanceontextclassificationtasks[EB?
                       OL].(2019 - 08 - 25)[2022 - 09 - 10].https:??arxiv.org?abs?1901.11196.
                [28] KARIMIA,ROSSIL,PRATIA.Aeda:Aneasierdataaugmentationtechniquefortextclassification[EB?OL].
                       (2021 - 08 - 30)[2022 - 09 - 10].https:??arxiv.org?abs?2108.13230.
                [29] LIUK,LIUX,YANGA,etal.Arobustadversarialtrainingapproachtomachinereadingcomprehension[C]??
                       ProceedingsoftheAAAIConferenceonArtificialIntelligence.2020.
                [30] 付瑞,李剑宇,王笳辉,等.面向领域知识图谱的实体关系联合抽取 [J].华东师范大学学报 (自然科学
                       版),2021(5):24 - 36.
                [31] WANGP,YANGA,MEN R,etal.Ofa:Unifyingarchitectures,tasks,andmodalitiesthroughasimplese
                       quence - to - sequencelearningframework[C]??InternationalConferenceonMachineLearning.PMLR,2022.
                [32] 李可悦,陈轶,牛少彰.基于 BERT的社交电商文本分类算法[J].计算机科学,2021,48(2):87 - 92.
                [33] LANDISJR,KOCHGG.Anapplicationofhierarchicalkappa - typestatisticsintheassessmentofmajorityagree
                       mentamongmultipleobservers [J].Biometrics,1977:363 - 374.
                [34] JIY,SUNA,ZHANGJ,etal.A criticalstudyondataleakageinrecommendersystem offlineevaluation[J].
                       ACM TransactionsonInformationSystems ,2023,41(3):1 - 27.
                [35] JIANGK,PRADEEPR,LINJ.ExploringlistwiseevidencereasoningwithT5forfactverification[C]??Proceed
                       ingsofthe59thAnnualMeetingoftheAssociationforComputationalLinguisticsandthe11thInternationalJoint
                       ConferenceonNaturalLanguageProcessing (Volume2:ShortPapers).2021.


                                Intelligentanalysisandjointextractionofrescueentitiesand
                                            relationshipsinwaterprojecttexts
                                                                   1,2
                                                      1
                                                                                            3
                                         1
                                                                                 1
                            YANGYangrui,ZHUYaping,LIUXuemei ,CHENSisi,LIHuimin
                  (1.SchoolofInformationEngineering,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou 450000,China;
                          2.CollaborativeInnovationCenterforEfficientUtilizationofWaterResources,Zhengzhou 450000,China;
                    3.SchoolofWaterConservancy,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou 450000,China)
                  Abstract:Waterprojectrescuemeasuresareanimportantpartoffloodpreventionemergencyplan.Thisarticle
                  aimstouseinformationextractiontechnologytoextractwaterprojectrescueknowledgefrom variousunstructured
                  textsources ,andtransform itintoatriplestructureof〈entity,relationship,entity〉,andprovidestructured
                  knowledgesupportforintelligentgenerationofemergencyplans.Theheterogeneouswaterprojectrescueentityex
                  tractionandrelationshipextractiontasksareconsideredassequence - to - sequencegenerationtasks ,andwaterpro
                  jectrescueentitiesandrelationshipsjointextraction (WRERJE)frameworkbasedonlargelanguagemodelsispro
                  posed.WRERJEisamultitaskingframeworkforbothentityextractionandrelationshipextraction ,whichusesdy
                  namicpromptstoguideT5forjointextractionofentitiesandrelationships.Thetextdataaugmentationmethodspe
                  cifictothefieldofwaterprojectrescueisstudied ,andonthebasisofthepreliminaryfine - tuningofWRERJEby
                  usingasmallnumberoflabeledsamples ,WRERJEisfurtherfine - tunedbyusingmorevaguelydescribedbutcor
                  rectlylabeleddataareobtainedbydataaugmentationmethod,improvingitsperformanceforextractingwaterproject
                  rescueentitiesandrelationships.TheperformanceofWRERJEisevaluatedexperimentally ,andtheresultsshow
                  thatWRERJEshowshighextractionperformanceinthetaskofwaterprojectrescueentityextractionandrelationship
                  extraction(F1valuesofentityandrelationshipreach78.42% and78.22%,respectively),whichverifiestheef
                  fectivenessofdynamicpromptandjointextractionmethods.
                  Keywords:waterprojectrescue;emergencyplan;informationextraction; dynamicprompt; jointextraction;
                  textdataaugmentation

                                                                                    (责任编辑:于福亮)




                —  8 2  —
                     8
   65   66   67   68   69   70   71   72   73   74   75