Page 85 - 2024年第55卷第5期
P. 85

[23] ZHANGX,ZHENGZ,WANGK.PredictionofrunoffintheupperyangtzeriverbasedonCEEMDAN - NARmod
                       el [J].WaterSupply,2021,21(7):3307 - 3318.
                [24] SIBTAINM,LIX,NABIG,etal.Developmentofathree - stagehybridmodelbyutilizingatwo - stagesignalde
                       compositionmethodologyandmachinelearningapproachtopredictmonthlyrunoffatswatriverbasin,Pakistan[J].
                       DiscreteDynamicsinNatureandSociety ,2020,2020:7345676.
                [25] WANGH,SUNJQ.VariabilityofNortheastChinariverbreak - update[J].AdvancesinAtmosphericSciences,
                      2009,26(4):701 - 706.
                [26] WUZH,HUANGNE.Ensembleempiricalmodedecomposition:Anoiseassisteddataanalysismethod[J].Ad
                       vancesinAdaptiveDataAnalysis ,2009,1(1):1 - 41.
                [27] COLOMINASM A,SCHLOTTHAUERG,TORRESM E,etal.Noise - assistedEMDmethodsinaction[J].Ad
                       vancesinAdaptiveDataAnalysis,2012,4(4):1250025.
                [28] COLOMINASM A,SCHLOTTHAUERG,TORRESM E,etal.ImprovedcompleteensembleEMD:asuitable
                       toolforbiomedicalsignalprocessing[J].BiomedicalSignalProcessingandControl,2014,14:19 - 29.
                [29] LIANGH,BRESSLERSL,DESIMONER,etal.Empiricalmodedecomposition:amethodforanalyzingneural
                       data[J].Neurocomputing,2004,65:801 - 807.
                [30] BENGIOY,SIMARDP,FRASCONIP.Learninglong - term dependencieswithgradientdescentisdifficult[J].
                       IEEETransactionsonNeuralNetworks,1994,5(2):157 - 166.
                [31] GERSFA,SCHMIDHUBERJ,CUMMINSFA.Learningtoforget:continualpredictionwithLSTM[J].Neural
                       Computation ,2000,12(10):2451 - 2471.
                [32] GRAVESA,SCHMIDHUBERJ.FramewisephonemeclassificationwithbidirectionalLSTM andotherneuralnet
                       workarchitectures [J].NeuralNetworks,2005,18(5?6):602 - 610.
                [33] BOXGEP,JENKINS G M, REINSEL C.Time SeriesAnalysis: Forecasting and Control[M].London:
                       PalgraveMacmillan,2013.
                [34] WANGJ,LUOY,TANGL,etal.AnewweightedCEEMDAN - basedpredictionmodel:Anexperimentalinvesti
                       gationofdecompositionandnon - decompositionapproaches[J].Knowledge - BasedSystems,2018,160:188 - 199.


                             Forecastingbreak - updateofrivericeinnorthernChinabasedon
                                     deeplearningandsignaldecompositiontechnology

                                                       2
                                        1
                                                                    1
                                                                                1
                                                                                          1
                              DINGHong,WANGWeize,YANGZefan,LIUHuan,HUPeng
                            (1.StateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,ChinaInstituteof
                                      WaterResourcesandHydropowerResearch,Beijing 100038,China;
                          2.SchoolofCivilEngineeringandArchitecture,Xi’anUniversityofTechnology,Xi’an 710048,China)
                  Abstract:IcefloodsoccasionallyoccurduringrivericebreakingupinnorthernChinainspring,threateningthe
                  safetyofhydraulicstructures.Forecastingthebreak - updateofriverice (BUDRI)accuratelyisanimportantrefer
                  enceforanti - floodingcommandanddispatchingdecision - makingduringicebreakingperiod.Forforecastingthe
                  BUDRIinnorthernChina ,theobservedbreak - updateseriesofrivericeof5representativehydrologicalstationsin
                  HeilongjiangprovincelocatedinnorthernChinawasselected,andtheComplementaryEnsembleEmpiricalMode
                  DecompositionwithAdaptiveNoisetechnologyanddeeplearningmodelLongShortTerm Memory (CEEMDAN -
                  LSTM)wasusedtoforecasttheBUDRI.TheresultsshowthattheforecastaccuracyofCEEMDAN - LSTM,com
                  paredwithLSTM ,hadbeensignificantlyimprovedwiththemeanabsoluteerrorreducedfrom2.51dto1.20d,the
                  qualificationrateincreasedfrom91.59% to100% inthetrainingperiod.andthemeanabsoluteerrorreducedfrom
                  3.85dto1.65d ,thequalificationrateincreasedfrom 88% to96% inthevalidationperiod.TheCEEMDAN -
                  LSTM performedwellinforecastingtheBUDRIinnorthernChina ,whichcanprovideimportantinformationfor
                  command ,dispatch,anddecision - makingoficefloodcontrol.
                  Keywords:break - updateofriverice;signaldecompositiontechnology;deeplearning;forecastingmethod;
                  northernChina

                                                                                    (责任编辑:王 婧)

                                                                                                —  5 8 5 —
   80   81   82   83   84   85   86   87   88   89   90