Page 84 - 2024年第55卷第5期
P. 84
格率从 80%提升至 100%。
以上结果表明 CEEMDAN - LSTM在黑龙江省代表水文站开河日期预报中表现较好,但对极值的预
报效果不佳。在未来的研究中,可对模型参数的选取进行深入研究,以提高模型预报精度。
参 考 文 献:
[ 1] MORALES - MAR?NLA,SANYALPR,KADOWAKIH,etal.Ahydrologicalandwatertemperaturemodelling
frameworktosimulatethetimingofriverfreeze - upandice - coverbreakupinlarge - scalecatchments[J].Environ
mentalModellingandSoftware,2019,114:49 - 63.
[ 2] 孙亚翡,王涛,路锦枝,等.基于 BP - DEMATEL算法的冰情预报因子敏感性分析[J].水利学报,2022,
53(9):1083 - 1091.
[ 3] 杨开林.河渠冰水力学、冰情观测与预报研究进展[J].水利学报,2018,49(1):81 - 91.
[ 4] PETERSDL,PROWSETD,PIETRONIROA,etal.FloodhydrologyofthePeace - AthabascaDelta,northern
Canada[J].HydrologicalProcesses,2006,20(19):4073 - 4096.
[ 5] SHEVNINAEV,SOLOV’EVAZS.Long - termvariabilityandmethodsofforecastingdatesoficebreak - upinthe
mouthareaoftheObandYeniseirivers [J].RussianMeteorologyandHydrology,2008,33(7):458 - 465.
[ 6] 王涛,余弘婧,郭新蕾,等.黄河内蒙古河段典型凌情过程模拟[J].水利学报,2021,52(5):535 - 545.
[ 7] 杨开林.冰盖河渠水深平均流速的横向分布[J].水利学报,2015,46(3):291 - 297.
[ 8] WANGT,GUOX,FUH,etal.Breakupicejamforecastingbasedonneuralnetworktheoryandformationfactor
[C]??E - proceedingsofthe38thIAHRWorldCongress,PanamaCity,2019.
[ 9] CHENS,JIH.Fuzzyoptimizationneuralnetworkapproachforiceforecastintheinnermongoliareachofthe
YellowRiver[J].HydrologicalSciencesJournal,2005,50(2):319 - 330.
[10] 王涛,刘之平,郭新蕾,等.基于神经网络理论的开河期冰坝预报研究 [J].水利学报,2017,48(11):
1355 - 1362.
[11] WANGYN,YUANZ,LIUHQ,etal.Anewschemeforprobabilisticforecastingwithanensemblemodelbased
onCEEMDANandAM- MCMCanditsapplicationinprecipitationforecasting[J].ExpertSystemsWithApplica
tions ,2022,187:115872.
[12] 丁雪慧,郝振纯,鞠琴,等.黑龙江冰情分析与预报研究[J].水电能源科学,2016,34(10):9 - 13.
[13] 宋春山,林立邦,韩红卫,等.基于 BP神经网络模型黑龙江漠河段气温变化对开河影响预测[J].东北农
业大学学报,2020,51(8):66 - 73.
[14] 宋春山,林立邦,韩红卫,等.基于 BP神经网络的黑龙江漠河段冰坝预测[J].水利水运工程学报,2021
(2):57 - 63.
[15] 张璐,张生,李超,等.万家寨水库上游的冰情特征分析及预报[J].水土保持通报,2017,37(1):196 - 200.
[16] KRATZERTF,KLOTZD,BRENNER C,etal.Rainfall - RunoffmodellingusingLong - Short - Term- Memory
(LSTM)networks[J].HydrologyandEarthSystem Sciences,2018,22(11):6005 - 6022.
[17] 谭永杰,王现勋,段茗续,等.不同模态分解方法 结 合 LSTM 模 型 对 日 径 流 预 报 的 影 响 [J].人 民 珠 江,
2023,44(12):64 - 72,79
[18] SEOY,KIM S,KISIO,etal.Dailywaterlevelforecastingusingwaveletdecompositionandartificialintelligence
techniques [J].JournalofHydrology,2015,520:224 - 243.
[19] DAIS,NIUD,LIY.Dailypeakloadforecastingbasedoncompleteensembleempiricalmodedecompositionwith
adaptivenoiseandsupportvectormachineoptimizedbymodifiedgreywolfoptimizationalgorithm[J].Energies,
2018,11(1):11010163.
[20] TANQF,LEIXH,WANG X,etal.Anadaptivemiddleandlong - term runoffforecastmodelusingEEMD -
ANNhybridapproach [J].JournalofHydrology,2018,567:767 - 780.
[21] 李凯,任炳昱,王佳俊,等.基于 CEEMDAN - Transformer的灌浆流量混合预测模型[J].水利学报,2023,
54(7):806 - 817.
[22] LIUY,WANGL,YANGL,etal.RunoffpredictionandanalysisbasedonimprovedCEEMDAN - OS - QR - ELM
[J].IEEEAccess,2021,9:57311 - 57324.
4
— 5 8 —