Page 84 - 2024年第55卷第5期
P. 84

格率从 80%提升至 100%。
                  以上结果表明 CEEMDAN - LSTM在黑龙江省代表水文站开河日期预报中表现较好,但对极值的预
              报效果不佳。在未来的研究中,可对模型参数的选取进行深入研究,以提高模型预报精度。


              参 考 文 献:


                [ 1] MORALES - MAR?NLA,SANYALPR,KADOWAKIH,etal.Ahydrologicalandwatertemperaturemodelling
                       frameworktosimulatethetimingofriverfreeze - upandice - coverbreakupinlarge - scalecatchments[J].Environ
                       mentalModellingandSoftware,2019,114:49 - 63.
                [ 2] 孙亚翡,王涛,路锦枝,等.基于 BP - DEMATEL算法的冰情预报因子敏感性分析[J].水利学报,2022,
                      53(9):1083 - 1091.
                [ 3] 杨开林.河渠冰水力学、冰情观测与预报研究进展[J].水利学报,2018,49(1):81 - 91.
                [ 4] PETERSDL,PROWSETD,PIETRONIROA,etal.FloodhydrologyofthePeace - AthabascaDelta,northern
                       Canada[J].HydrologicalProcesses,2006,20(19):4073 - 4096.
                [ 5] SHEVNINAEV,SOLOV’EVAZS.Long - termvariabilityandmethodsofforecastingdatesoficebreak - upinthe
                       mouthareaoftheObandYeniseirivers [J].RussianMeteorologyandHydrology,2008,33(7):458 - 465.
                [ 6] 王涛,余弘婧,郭新蕾,等.黄河内蒙古河段典型凌情过程模拟[J].水利学报,2021,52(5):535 - 545.
                [ 7] 杨开林.冰盖河渠水深平均流速的横向分布[J].水利学报,2015,46(3):291 - 297.
                [ 8] WANGT,GUOX,FUH,etal.Breakupicejamforecastingbasedonneuralnetworktheoryandformationfactor
                       [C]??E - proceedingsofthe38thIAHRWorldCongress,PanamaCity,2019.
                [ 9] CHENS,JIH.Fuzzyoptimizationneuralnetworkapproachforiceforecastintheinnermongoliareachofthe
                       YellowRiver[J].HydrologicalSciencesJournal,2005,50(2):319 - 330.
                [10] 王涛,刘之平,郭新蕾,等.基于神经网络理论的开河期冰坝预报研究 [J].水利学报,2017,48(11):
                      1355 - 1362.
                [11] WANGYN,YUANZ,LIUHQ,etal.Anewschemeforprobabilisticforecastingwithanensemblemodelbased
                       onCEEMDANandAM- MCMCanditsapplicationinprecipitationforecasting[J].ExpertSystemsWithApplica
                       tions ,2022,187:115872.
                [12] 丁雪慧,郝振纯,鞠琴,等.黑龙江冰情分析与预报研究[J].水电能源科学,2016,34(10):9 - 13.
                [13] 宋春山,林立邦,韩红卫,等.基于 BP神经网络模型黑龙江漠河段气温变化对开河影响预测[J].东北农
                       业大学学报,2020,51(8):66 - 73.
                [14] 宋春山,林立邦,韩红卫,等.基于 BP神经网络的黑龙江漠河段冰坝预测[J].水利水运工程学报,2021
                       (2):57 - 63.
                [15] 张璐,张生,李超,等.万家寨水库上游的冰情特征分析及预报[J].水土保持通报,2017,37(1):196 - 200.
                [16] KRATZERTF,KLOTZD,BRENNER C,etal.Rainfall - RunoffmodellingusingLong - Short - Term- Memory
                       (LSTM)networks[J].HydrologyandEarthSystem Sciences,2018,22(11):6005 - 6022.
                [17] 谭永杰,王现勋,段茗续,等.不同模态分解方法 结 合 LSTM 模 型 对 日 径 流 预 报 的 影 响 [J].人 民 珠 江,
                      2023,44(12):64 - 72,79
                [18] SEOY,KIM S,KISIO,etal.Dailywaterlevelforecastingusingwaveletdecompositionandartificialintelligence
                       techniques [J].JournalofHydrology,2015,520:224 - 243.
                [19] DAIS,NIUD,LIY.Dailypeakloadforecastingbasedoncompleteensembleempiricalmodedecompositionwith
                       adaptivenoiseandsupportvectormachineoptimizedbymodifiedgreywolfoptimizationalgorithm[J].Energies,
                      2018,11(1):11010163.
                [20] TANQF,LEIXH,WANG X,etal.Anadaptivemiddleandlong - term runoffforecastmodelusingEEMD -
                       ANNhybridapproach [J].JournalofHydrology,2018,567:767 - 780.
                [21] 李凯,任炳昱,王佳俊,等.基于 CEEMDAN - Transformer的灌浆流量混合预测模型[J].水利学报,2023,
                      54(7):806 - 817.
                [22] LIUY,WANGL,YANGL,etal.RunoffpredictionandanalysisbasedonimprovedCEEMDAN - OS - QR - ELM
                       [J].IEEEAccess,2021,9:57311 - 57324.

                     4
                —  5 8  —
   79   80   81   82   83   84   85   86   87   88   89