Page 59 - 2025年第56卷第1期
P. 59

pacted clay beams[J]. Canadian Geotechnical Journal, 2011, 48(8): 1163-1173.
                [ 63 ]  AMARASIRI A L, KODIKARA J K. Numerical modeling of desiccation cracking using the cohesive crack method
                      [J]. International Journal of Geomechanics, 2013, 13(3): 213-221.
                [ 64 ]  BIOT M A, WILLIS D G. The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics,
                      1957, 24(2): 594-601.
                [ 65 ]  ZIENKIEWICZ O C. Basic formulation of static and dynamic behaviours of soil and other porous media[J]. Applied
                      Mathematics and Mechanics, 1982, 3(4): 457-468.
                [ 66 ]  POUYA A, YAZDI P B. A damage-plasticity model for cohesive fractures[J]. International Journal of Rock Me⁃
                      chanics and Mining Sciences, 2015, 73: 194-202.
                [ 67 ]  POUYA A, VO T D, HEMMATI S, et al. Modeling soil desiccation cracking by analytical and numerical approa⁃
                      ches[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(3): 738-763.
                [ 68 ]  SANCHEZ M, MANZOLI O L, GUIMARAES L J. Modeling 3-D desiccation soil crack networks using a mesh
                      fragmentation technique[J]. Computers and Geotechnics, 2014, 62: 27-39.
                [ 69 ]  TABIEI A, ZHANG W L. Cohesive element approach for dynamic crack propagation: Artificial compliance and
                      mesh dependency[J]. Engineering Fracture Mechanics, 2017, 180: 23-42.
                [ 70 ]  KLEIN P A, FOULK J W, CHEN E P, et al. Physics-based modeling of brittle fracture: cohesive formulations and
                      the application of meshfree methods[J]. Theoretical and Applied Fracture Mechanics, 2001, 37(1∕3): 99-166.
                [ 71 ]  BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[ J]. International
                      Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
                [ 72 ]  MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. Inter⁃
                      national Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
                [ 73 ]  MOHAMMADNEJAD T, KHOEI A. Hydro - mechanical modeling of cohesive crack propagation in multiphase
                      porous media using the extended finite element method [ J]. International Journal for Numerical and Analytical
                      Methods in Geomechanics, 2013, 37(10): 1247-1279.
                [ 74 ]  CHENG W, BIAN H, HATTAB M, et al. Numerical modelling of desiccation shrinkage and cracking of soils[J].
                      European Journal of Environmental and Civil Engineering, 2023, 27: 1-21.
                [ 75 ]  YU P, WANG X, YU J, et al. XFEM Simulation of soil crack evolution process considering the stress concentra⁃
                      tion and redistribution at the crack tip[J]. International Journal of Geomechanics, 2022, 22(9): 04022137.
                [ 76 ]  FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the
                      Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
                [ 77 ]  吴建营. 固体结构损伤破坏统一相场理论, 算法和应用[J]. 力学学报, 2021, 53(2): 302-329.
                [ 78 ]  AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast
                      hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
                [ 79 ]  BOURDIN B, CHUKWUDOZIE C, YOSHIOKA K. A variational approach to the numerical simulation of hydraulic
                      fracturing[C]∕∕SPE Annual Technical Conference and Exhibition. 2012.
                [ 80 ]  MIKELIC A, WHEELER M F, WICK T. A phase-field method for propagating fluid-filled fractures coupled to a
                      surrounding porous medium[J]. Multiscale Modeling & Simulation, 2015, 13(1): 367-398.
                [ 81 ]  MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces
                      in hydro - poro - elasticity and hydraulic fracturing of fluid - saturated porous media [ J]. Computer Methods in
                      Applied Mechanics and Engineering, 2016, 304(1): 619-655.
                [ 82 ]  HU T, GUILLEMINOT J, DOLBOW J E. A phase-field model of fracture with frictionless contact and random
                      fracture properties: Application to thin-film fracture and soil desiccation[J]. Computer Methods in Applied Me⁃
                      chanics and Engineering, 2020, 368: 113106.
                [ 83 ]  LUO C, SANAVIA L, DE LORENZIS L. Phase-field modeling of drying-induced cracks: Choice of coupling and
                      study of homogeneous and localized damage[J]. Computer Methods in Applied Mechanics and Engineering, 2023,
                      410: 115962.





                —  5 4  —
   54   55   56   57   58   59   60   61   62   63   64