Page 144 - 2025年第56卷第5期
P. 144
[ 18] 吴凡,杨肖丽,任立良,等 . 人类活动影响下的中国各大流域水文干旱状态演变规律[J] 水利学报,2024,
.
55 (12):1448-1460.
[ 19] 邢艳春,甯珂,李雪兰 . 松辽流域生态环境时空动态评价及驱动因素分析[J] 中国水利水电科学研究院学报
.
(中英文),2024,22 (1):84-96.
[ 20] 张建云,章四龙,王金星,等 . 近 50 年来中国六大流域年际径流变化趋势研究[J] 水科学进展,2007(2):
.
230-234.
.
[ 21] 宋志远,段凯,赵勇,等 . 中国流域水碳平衡模拟模型研究 I:模型原理与构建[J] 水利学报,2025,56
(4):541-549.
[ 22] LEHNER B, VERDIN K, JARVIS A. New global hydrography derived from spaceborne elevation data[J] Eos,
.
Transactions American Geophysical Union,2008,89(10):93-94.
[ 23] SHI X Z,YU D S,XU S X,et al. Cross-reference for relating genetic soil classification of China with WRB at dif⁃
.
ferent scales[J] Geoderma,2010,155(3/4):344-350.
[ 24] WANG P, HUANG C, BROWN DE COLSTOUN E C, et al. Global Human Built-up And Settlement Extent
(HBASE) dataset from landsat[Z] Palisades, New York: NASA Socioeconomic Data and Applications Center
.
(SEDAC),2017.
[ 25] LIU Y, LIU R G, CHEN J M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011)
from combined AVHRR and MODIS data[J] Journal of Geophysical Research-Biogeosciences,2012,117:4003.
.
[ 26] WANG H Y,ZHAO X,LIANG S L,et al. Developing long time series 1-km land cover maps from 5-km AVHRR
data using a super-resolution method[J] Ieee Transactions On Geoscience and Remote Sensing, 2021, 59(7):
.
5479-5493.
[ 27] WANG H Y, ZHAO X, ZHANG X, et al. Long time series land cover classification in China from 1982 to 2015
.
based on Bi-LSTM deep learning[J] Remote Sensing,2019,11(14):1639.
[ 28] HE J, YANG K, TANG W, et al. The first high-resolution meteorological forcing dataset for land process studies
.
over China[J] Scientific Data,2020,7(1):25.
[ 29] YANG K, HE J, TANG W, et al. On downward shortwave and longwave radiations over high altitude regions:
Observation and modeling in the Tibetan Plateau[J] Agricultural and Forest Meteorology,2010,150(1):38-46.
.
[ 30] 阳坤,何杰,唐文君,等 . 中国区域地面气象要素驱动数据集(1979-2018)[Z] 北京:国家青藏高原科学数
.
据中心,2019.
[ 31] ZHANG K,KIMBALL J S,MU Q,et al. Satellite based analysis of northern ET trends and associated changes in
the regional water balance from 1983 to 2005[J] Journal of Hydrology,2009,379(1):92-110.
.
[ 32] ZHANG K, KIMBALL J S, NEMANI R R, et al. A continuous satellite-derived global record of land surface
evapotranspiration from 1983 to 2006[J] Water Resources Research,2010,46(9):W09522.
.
.
[ 33] SENAY G,CTR S K,CTR N M V. Operational global actual evapotranspiration using the SSEBop model[J] U. S.
Geological Survey,2020,20(7):1915.
[ 34] SENAY G B, KAGONE S, VELPURI N M. Operational global actual evapotranspiration: development, evalua⁃
.
tion,and dissemination:Sensors[J] Sensors,2020,20(7):1915.
[ 35] ZHANG Y,XIAO X M,WU X C,et al. Data descriptor:A global moderate resolution dataset of gross primary pro⁃
.
duction of vegetation for 2000-2016[J] Scientific Data,2017,4(1):170165.
[ 36] CLEUGH H A, LEUNING R, MU Q, et al. Regional evaporation estimates from flux tower and MODIS satellite
data[J] Remote Sensing of Environment,2007,106(3):285-304.
.
[ 37] BAIK J, LIAQAT U W, CHOI M. Assessment of satellite- and reanalysis-based evapotranspiration products with
two blending approaches over the complex landscapes and climates of Australia[J] Agricultural and Forest Meteorol⁃
.
ogy,2018,263:388-398.
[ 38] JANG K, KANG S, LIM Y, et al. Monitoring daily evapotranspiration in Northeast Asia using MODIS and a
regional Land Data Assimilation System[J] Journal of Geophysical Research: Atmospheres, 2013,118(23):
.
12927-12940.
[ 39] CASTELLI M. Evapotranspiration changes over the European Alps: consistency of trends and their drivers between
.
the MOD16 and SSEBop algorithms[J] Remote Sensing,2021,13(21):4316.
.
[ 40] KENDALL M G. Rank Correlation Methods[J] British Journal of Psychology,1990,25(1):86-91.
[ 41] MANN H B. Non-parametric tests against trend[J] Econometrica,1945,13:245.
.
— 690 —