Page 98 - 2025年第56卷第5期
P. 98
参 考 文 献:
[ 1 ] 冯钧,杭婷婷,陈菊,等 . 领域知识图谱研究进展及其在水利领域的应用[J] 河海大学学报(自然科学版),
.
2021,49(1):26-34.
.
[ 2 ] 蔡启航,徐彬,董晓迪 . 利用语义增强提示和结构信息的知识图谱补全模型[J/OL] 计算机科学,(2024-
10-29)[2024-11-17] http:/kns. cnki. net/kcms/detail/50. 1075. TP. 20241028. 1439. 034. html.
.
/
[ 3 ] 张继勋,王虞清,焦修明,等 . 基于本体和自然语言处理的土石坝险情知识图谱构建方法研究[J] 水利学
.
报,2024,55(9):1071-1083,1097.
.
[ 4 ] 陈娟,赵新潮,隋京言,等 . 故事启发大语言模型的时序知识图谱预测[J] 模式识别与人工智能,2024,37
(8):715-728.
[ 5 ] GUO L,YAN F,LU Y,et al. An automatic machining process decision-making system based on knowledge graph
.
[J] International Journal of Computer Integrated Manufacturing,2021,34(12):1348-1369.
[ 6 ] LAN L, TUAN T, NGAN T, et al. A new complex fuzzy inference system with fuzzy knowledge graph and exten⁃
.
sions in decision making[J] IEEE Access,2020,8:164899-164921.
[ 7 ] HUANG X,ZHANG J,LI D,et al. Knowledge graph embedding based question answering[C]/Proceedings of the
/
twelfth ACM international conference on web search and data mining. 2019.
.
[ 8 ] GUO Q,ZHUANG F,QIN C,et al. A survey on knowledge graph-based recommender systems[J] IEEE Transac⁃
tions on Knowledge and Data Engineering,2020,34(8):3549-3568.
[ 9 ] 张 栋 梁 , 周 伟 , 马 刚 , 等 . 面 向 水 利 防 汛 抢 险 的 知 识 图 谱 构 建 与 应 用[J] 水 利 学 报 , 2025, 56(3):
.
341-353.
[ 10] 张军珲,黄希扬,桂明宇,等 . 面向数字孪生工程的水利知识图谱构建及应用[J] 人民黄河,2024,46(4):
.
121-124,130.
[ 11] WANG L, LIU X, LIU Y, et al. Knowledge graph-based method for intelligent generation of emergency plans for
water conservancy projects[J] IEEE Access,2023,11:84414-84429.
.
[ 12] 刘雪梅,卢汉康,李海瑞,等 . 知识驱动的水利工程应急方案智能生成方法——以南水北调中线工程为例
[J] 水利学报,2023,54(6):666-676.
.
[ 13] 杨阳蕊,朱亚萍,刘雪梅,等 . 水利工程文本中抢险实体和关系的智能分析与提取[J] 水利学报,2023,54
.
(7):818-828.
.
[ 14] 冯钧,吕志鹏,范振东,等 . 基于大语言模型辅助的防洪调度规则标签设计方法[J] 水利学报,2024,55
(8):920-930.
[ 15] 杨阳蕊,朱亚萍,陈思思,等 . 融合群体智能策略的 AI 链在大坝防汛抢险知识推理中的应用[J] 水利学报,
.
2023,54(9):1122-1132.
[ 16] EDGE D,TRINH H,CHENG N,et al. From local to global: A graph RAG approach to query-focused summari⁃
.
zation[EB/OL] (2024-04-24)[2024-12-01] https:/arxiv. org/abs/2404. 16130v1.
/
.
.
[ 17] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks[J]
Advances in Neural Information Processing Systems,2020,33:9459-9474.
[ 18] ZHANG B, SOH H. Extract, define, canonicalize: An LLM-based framework for knowledge graph construction
/
.
[EB/OL] (2024-04-5)[2024-12-01] https:/arxiv. org/abs/2404. 03868.
.
[ 19] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language
models[J] Advances in Neural Information Processing Systems,2022,35:24824-24837.
.
[ 20] 陶 江 垚 , 奚 雪 峰 , 盛 胜 利 , 等 . 结 构 化 思 维 提 示 增 强 大 语 言 模 型 推 理 能 力 综 述[J] 计 算 机 工 程 与 应 用 ,
.
2025,61(6):64-83.
[ 21] MA X. Knowledge graph construction and application in geosciences: A review[J] Computers & Geosciences,
.
2022,161:105082.
[ 22] WU H,ZHONG B,LI H,et al. Combining computer vision with semantic reasoning for on-site safety management
.
in construction[J] Journal of Building Engineering,2021,42:103036.
[ 23] 栾辉,刘聪 . 基于 SOA 的车载服务及软件开发设计与研究[J] 上海汽车,2022(3):24-30.
.
— 644 —