Page 98 - 2025年第56卷第5期
P. 98

参  考  文  献:


               [ 1 ] 冯钧,杭婷婷,陈菊,等 .  领域知识图谱研究进展及其在水利领域的应用[J]  河海大学学报(自然科学版),
                                                                                   .
                      2021,49(1):26-34.
                                                                                         .
               [ 2 ] 蔡启航,徐彬,董晓迪 .  利用语义增强提示和结构信息的知识图谱补全模型[J/OL]  计算机科学,(2024-
                      10-29)[2024-11-17] http:/kns. cnki. net/kcms/detail/50. 1075. TP. 20241028. 1439. 034. html.
                                        .
                                            /
               [ 3 ] 张继勋,王虞清,焦修明,等 .  基于本体和自然语言处理的土石坝险情知识图谱构建方法研究[J]  水利学
                                                                                                    .
                      报,2024,55(9):1071-1083,1097.
                                                                                 .
               [ 4 ] 陈娟,赵新潮,隋京言,等 .  故事启发大语言模型的时序知识图谱预测[J]  模式识别与人工智能,2024,37
                      (8):715-728.
               [ 5 ] GUO L,YAN F,LU Y,et al.  An automatic machining process decision-making system based on knowledge graph
                         .
                      [J]  International Journal of Computer Integrated Manufacturing,2021,34(12):1348-1369.
               [ 6 ] LAN L, TUAN T, NGAN T, et al.  A new complex fuzzy inference system with fuzzy knowledge graph and exten⁃
                                          .
                      sions in decision making[J]  IEEE Access,2020,8:164899-164921.
               [ 7 ] HUANG X,ZHANG J,LI D,et al.  Knowledge graph embedding based question answering[C]/Proceedings of the
                                                                                             /
                      twelfth ACM international conference on web search and data mining.  2019.
                                                                                               .
               [ 8 ] GUO Q,ZHUANG F,QIN C,et al.  A survey on knowledge graph-based recommender systems[J]  IEEE Transac⁃
                      tions on Knowledge and Data Engineering,2020,34(8):3549-3568.
               [ 9 ] 张 栋 梁 , 周 伟 , 马 刚 , 等 .  面 向 水 利 防 汛 抢 险 的 知 识 图 谱 构 建 与 应 用[J]  水 利 学 报 , 2025, 56(3):
                                                                                    .
                      341-353.
               [ 10] 张军珲,黄希扬,桂明宇,等 .  面向数字孪生工程的水利知识图谱构建及应用[J]  人民黄河,2024,46(4):
                                                                                      .
                      121-124,130.
               [ 11] WANG L, LIU X, LIU Y, et al.  Knowledge graph-based method for intelligent generation of emergency plans for
                      water conservancy projects[J]  IEEE Access,2023,11:84414-84429.
                                            .
               [ 12] 刘雪梅,卢汉康,李海瑞,等 .  知识驱动的水利工程应急方案智能生成方法——以南水北调中线工程为例
                      [J]  水利学报,2023,54(6):666-676.
                         .
               [ 13] 杨阳蕊,朱亚萍,刘雪梅,等 .  水利工程文本中抢险实体和关系的智能分析与提取[J]  水利学报,2023,54
                                                                                          .
                      (7):818-828.
                                                                                         .
               [ 14] 冯钧,吕志鹏,范振东,等 .  基于大语言模型辅助的防洪调度规则标签设计方法[J]  水利学报,2024,55
                      (8):920-930.
               [ 15] 杨阳蕊,朱亚萍,陈思思,等 .  融合群体智能策略的 AI 链在大坝防汛抢险知识推理中的应用[J]  水利学报,
                                                                                                  .
                      2023,54(9):1122-1132.
               [ 16] EDGE D,TRINH H,CHENG N,et al.  From local to global: A graph RAG approach to query-focused summari⁃

                                                         .
                      zation[EB/OL]  (2024-04-24)[2024-12-01]  https:/arxiv. org/abs/2404. 16130v1.
                                                               /
                                 .
                                                                                                          .
               [ 17] LEWIS P, PEREZ E, PIKTUS A, et al.  Retrieval-augmented generation for knowledge-intensive nlp tasks[J]
                      Advances in Neural Information Processing Systems,2020,33:9459-9474.
               [ 18] ZHANG B, SOH H.  Extract, define, canonicalize: An LLM-based framework for knowledge graph construction
                                                          /
                                                    .
                      [EB/OL]  (2024-04-5)[2024-12-01]  https:/arxiv. org/abs/2404. 03868.
                             .

               [ 19] WEI  J, WANG  X, SCHUURMANS  D, et  al.   Chain-of-thought  prompting  elicits  reasoning  in  large  language
                      models[J]  Advances in Neural Information Processing Systems,2022,35:24824-24837.
                              .
               [ 20] 陶 江 垚 , 奚 雪 峰 , 盛 胜 利 , 等 . 结 构 化 思 维 提 示 增 强 大 语 言 模 型 推 理 能 力 综 述[J] 计 算 机 工 程 与 应 用 ,
                                                                                          .
                      2025,61(6):64-83.
               [ 21] MA  X.   Knowledge  graph  construction  and  application  in  geosciences: A  review[J]   Computers  &  Geosciences,
                                                                                     .
                      2022,161:105082.
               [ 22] WU H,ZHONG B,LI H,et al.  Combining computer vision with semantic reasoning for on-site safety management
                                    .
                      in construction[J]  Journal of Building Engineering,2021,42:103036.
               [ 23] 栾辉,刘聪 .  基于 SOA 的车载服务及软件开发设计与研究[J]  上海汽车,2022(3):24-30.
                                                                      .
                — 644   —
   93   94   95   96   97   98   99   100   101   102   103