Page 56 - 2022年第53卷第11期
P. 56
联立求解式(1)(29)得
+ h (T - T),i = 1 ,2,3
s,i w E,i E,i c,i s,i a s,i g
h )(T - T) - φ g,i ba
(T - T)k ?h = φ cs,i φ a,i φ ab0 - (h + φ a,i ba
+ = 1,整理得渡槽外壁温度
因为 φ a,i φ g,i
+
1 φ cs,i φ a,i φ ab0 + Tk ?h + (h + φ a,i ba a h T
E,i
c,i
w E,i
h )T+ φ g,i ba g
T = ,i = 1 ,2,3 (30)
s,i
(k ?h )(h + h ) h ?k + 1?(h + h )
E,i E,i c,i ba E,i E,i c,i ba
上式适用于渡槽架于各种地表上,包括土石地面、水面、冰面和雪面等。
当渡槽架于土石地面上,包括地面积冰和积雪时,为使问题简化,一般假设地表温度接近于气
温 [17] ,即 T≈T,这时
a
g
+ )(h ?k )?(h + h ) + T?(h + h ) + (h ?k )T
( φ cs,i φ a,i φ ab0 E,i E,i c,i ba w c,i ba E,i E,i a
T = ,i = 1,2,3 (31a)
s,i
h ?k + 1? (h + h )
E,i
E,i
ba
c,i
式中
{ 7.57 + 3.83V, i = 1 ,2
a
h + h = (31b)
c,i ba 6 .07 + 3.83V, i = 3
a
2.5 渡槽外壁的净热通量与气温和水温的关系 把式(31)代入式(1)得渡槽外壁净热通量
k
w)
E,i
c,i
E,i
c,i
w
ba
E,i
E,i
ba
E,i ( φ cs,i φ a,i φ ab0
= h ( + )(h ?k )?(h + h ) + T?(h + h ) + (h ?k )T a - T ,i = 1,2,3
φ wa,i E,i h ?k + 1?(h + h )
ba
E,i
E,i
c,i
整理得
+ )?(h + h ) + h (T- T),i = 1 ,2,3 (32)
φ wa,i = h ( φ cs,i φ a,i φ ab0 c,i ba wa,i a w
wa,i
h = 1? [h ?k + 1? (h + h )] (33)
wa,i E,i E,i c,i ba
2
式中 h 为渡槽外壁热交换系数,W?(m·℃)。
wa,i
当渡槽边墙和底板沿流动方向是均值平板时,则渡槽外壁的等效净热通量
1
= ( χ + χ + χ + h (T- T)
φ wae 1 φ wa,1 2 φ wa,2 3 φ wa,3 ) = φ wae0 wae a w (34)
χ
1 3 1 3
= ∑ + )?(h + h ),h = χ h (35)
wae ∑
φ wae0 χ h ( φ cs,i φ a,i φ ab0 c,i ba i wa,i
χ χ
i wa,i
i =1 i =1
2
2
为渡槽外壁的等效净热通量,W?m ;h 为渡槽外壁的等效热交换系数,W?(m·℃); χ =
式中:φ wae wae
χ + χ + χ 为渡槽湿周,m; χ 和 χ 分别为两边墙的湿周,m; χ 为底板的湿周,m。
1 2 3 1 2 3
3 渡槽水温的时空变化规律
随着渡槽水体与周围环境的热交换,包括水面与大气的热交换与水体与渡槽边墙和底板的热交
换,热量通过水流的运动和紊动向下游和整个过水断面传递,在一维条件下,沿流向的对流 - 热扩散
方程是
T w
( ρ CAT) + ( ρ CAVT) - x ( ) = B φ sa + χ (36)
Eρ CA
φ wbe
t p w x p w x p x
3
3
式中:t为时间,s;x为距离,m;ρ 为水的密度,kg?m ,ρ≈1000kg?m ;C为水的比热,在 0℃时
p
2
C = 4217.7J?(kg·℃);A为渡槽过水断面面积,m ;V为断面平均流速,m?s;E为热扩散系数;φ sa
x
p
2
为水面净热通量,W?m ;左边第一项表示过水断面热量随时间的变化;第二项表示过水断面热量随水
体运动的变化,又称为热量的对流传递;第三项表示过水断面热量随水体热扩散的变化。
采用参考文献[14]线性化热交换模型时,则水面与大气的热交换与水体与渡
当水面净热通量 φ sa
槽边墙和底板的热交换可描述为
+ χ 2
B φ sa φ wbe = B( φ sa0 + h(T- T) - h (T- T)) + χ ( φ wae0 + h (T- T)) (37)
wae
a
w
sa
a
sa2
a
w
w
= - a - bT (38)
φ sa0 φ sn sa sa a
— 1 3 2 —
2