Page 24 - 2025年第56卷第1期
P. 24

2020,48(5):433-439.
               [118] 王晓玲,戴林瀚,吕鹏,等 .  基于 DSR-可拓云的渗流安全综合评价研究[J]  天津大学学报(自然科学与工程
                                                                                 .
                      技术版),2019,52(1):52-61.
               [119] 王晓玲,李克,张宗亮,等 .  耦合 ALO-LSTM 和特征注意力机制的土石坝渗压预测模型[J]  水利学报 ,
                                                                                                 .
                      2022,53(4):403-412.
               [120] 徐炜,姜宏广,杨洵,等.  基于Box-Cox变换的贝叶斯概率水文预报效率[J] 水力发电学报,2018,37(11):15-23.
                                                                             .
                                                                                                          .
               [121] DING Y, ZHU Y, FENG J, et al.  Interpretable spatio-temporal attention LSTM model for flood forecasting[J]
                      Neurocomputing,2020,403:348-359.
               [122] CUI  Z, GUO  S, ZHOU  Y, et  al.   Exploration  of  dual-attention  mechanism-based  deep  learning  for  multi-step-
                                                   .
                      ahead flood probabilistic forecasting[J]  Journal of Hydrology,2023,622:129688.
                                                                           .
               [123] 崔虎虎 .  基于机理-数据融合的山区中小河流洪水预报模型研究[D]  西安:西安理工大学,2024.
               [124] 谭乔凤,宋嘉伟,闻昕,等 .  基于 DQN 算法的水电站站内负荷优化分配研究[J]  水利学报,2024,55(11):
                                                                                     .
                      1345-1355.
               [125] LIU Y,QIN H,ZHANG Z,et al.  Deriving reservoir operation rule based on Bayesian deep learning method consid⁃
                      ering multiple uncertainties[J]  Journal of Hydrology,2019,579:124207.
                                             .
               [126] XU W, ZHANG X, PENG A, et al.  Deep reinforcement learning for cascaded hydropower reservoirs considering
                                    .
                      inflow forecasts[J]  Water Resources Management,2020,34:3003-3018.
               [127] ADNAN R M, MOSTAFA R R, DAI H L, et al.  Enhancing accuracy of extreme learning machine in predicting
                      river  flow  using  improved  reptile  search  algorithm[J]   Stochastic  Environmental  Research  and  Risk  Assessment,
                                                              .
                      2023,37(8):3063-3083.
               [128] IKRAM  R  M  A, HAZARIKA  B  B, GUPTA  D, et  al.   Streamflow  prediction  in  mountainous  region  using  new
                                                                       .
                      machine learning and data preprocessing methods:a case study[J]  Neural Computing and Applications,2023,35
                      (12):9053-9070.
               [129] KUMAR K,SAINI R P.  A review on operation and maintenance of hydropower plants[J]  Sustainable Energy Tech⁃
                                                                                       .
                      nologies and Assessments,2022,49:101704.
                                                                .
               [130] 冯俊兰 .  大模型深度赋能行业形成 AI+新质生产力[J]  新型工业化,2024,14(7):96-104,131.

                       Advancements in intelligent dam engineering construction in the intelligence era


                                   1,2               2            1             2            2      2





                    ZHONG Denghua ,ZHANG Tianhong ,YU Hongling ,WANG Jiajun ,ZHANG Jun ,YU Jia



                         (1. College of Water Resources and Civil Engineering,China Agricultural University,Beijing  100091,China;



                  2. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation,Tianjin University,Tianjin  300072,China)


                Abstract:In the context of the era of intelligence,the theories and technologies underpinning intelligent dam engi⁃
                neering construction constitute a crucial new driver of productivity in hydraulic engineering,playing a key strategic

                role  in  advancing  the  transformation  and  upgrading  of  dam  construction  in  terms  of  intelligence,efficiency,and



                safety. Drawing on bibliometric analysis,this paper investigates current research hotspots and emerging trends in the
                intelligentization of hydraulic engineering. It clarifies the fundamental concepts,features,developmental stages,and


                cutting-edge findings of intelligent dam construction,and systematically reviews the evolutionary trajectory of digital-




                intelligent design,intelligent construction,and smart operation and maintenance. Finally,the paper discusses the
                future directions and core research foci of intelligent dam construction,aiming to provide theoretical and practical

                guidance for promoting the intelligent development of dam engineering in China.


                Keywords:intelligent era;intelligent dam construction;digital-intelligent design;intelligent construction;smart



                operation and maintenance
                                                                                     (责任编辑:韩          昆)
                                                                                                 — 19  —
   19   20   21   22   23   24   25   26   27   28   29