Page 46 - 2025年第56卷第1期
P. 46

[ 41 ]  于鹏. 浅海水下地形雷达成像理论研究及应用[D]. 上海: 华东师范大学, 2017.
                [ 42 ]  楚森森, 程亮, 程俭, 等. 基于光谱分层的浅海水深遥感反演方法[J]. 海洋学报, 2023, 45(1): 125-137.
                [ 43 ]  张磊, 牟献友, 冀鸿兰, 等. 基于多波段遥感数据的库区水深反演研究[J]. 水利学报, 2018, 49(5):
                      639-647.
                [ 44 ]  陈鲁宾, 李杰, 孟文君, 等. 基于 DPC 算法的星载激光雷达数据去噪方法在水深测量中的应用[J]. 海洋
                      通报, 2024, 43(5): 632-638.
                [ 45 ]  NEUMANN T A, MARKUS T, MARTINO A J, et al. The Ice, Cloud, and Land Elevation Satellite-2 mission:
                      A global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sens⁃
                      ing of Environment, 2019, 233: 111325.
                [ 46 ]  张文豪. 星载光子计数激光雷达在水深测量中的理论与应用研究[D]. 武汉: 武汉大学, 2021.
                [ 47 ]  马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3): 331-351.
                [ 48 ]  梁向棋. 机载激光测深技术在长江航道水深测量中的应用[J]. 中国水运. 航道科技, 2018, 538(2): 77-80.
                [ 49 ]  夏波, 朱运权. 无人机机载激光测深技术在内河滩险测量中的应用[J]. 水运工程, 2023(S1): 133-137.
                [ 50 ]  宫厚诚, 刘修男, 赵传宝. 基于无人船和机载 LiDAR 的大范围河网地形测量研究[J]. 测绘与空间地理信
                      息, 2023, 46(12): 24-26, 30.
                [ 51 ]  程涛, 徐宗学, 洪思扬, 等. 城市洪涝模拟中无人机摄影测量技术应用进展[J]. 水力发电学报, 2019,
                      38(4): 1-10.
                [ 52 ]  程涛, 黄本胜, 邱静, 等. 基于 UAV 精细化地表数据的城市洪涝模拟与分析———以济南市海绵城市示范
                      区为例[J]. 水力发电学报, 2021, 40(5): 110-124.
                [ 53 ]  庄振禄. 基于激光扫描的航道水深快速测量技术研究[J]. 中国设备工程, 2023(23): 195-197.
                [ 54 ]  陈百国. 多旋翼无人机技术在防汛抢险中的应用探讨[J]. 中国防汛抗旱, 2018, 28(2): 70-72.
                [ 55 ]  王成, 钟良. 基于无人机超标准洪水应急监测[C]∕∕第十一届防汛抗旱信息化论坛论文集. 长江勘测规划
                      设计研究有限责任公司, 长江空间信息技术工程有限公司(武汉), 2021.



                          Overview and research progress on river depth measurement techniques

                                              1,2           1,2,3           4           5
                                 ZHANG Baosen , LI Mingyang     , LIU Zhankui , JIE Yuxin
                        (1. Yellow River Resources Commission, Yellow River Institute of Hydraulic Research, Zhengzhou  450003, China;
                       2. Research Center on Levee Safety & Disaster Prevention, Ministry of Water Resources, Zhengzhou  450003, China;
                           3. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou  450003, China;
                            4. Huairou Laboratory, Beijing  101499, China; 5. Tsinghua University, Beijing  100084, China)


                  Abstract: This article provides an overview of river depth measurement methods, with a focus on the current de⁃
                  velopment status of unmanned measurement technologies and the prospects of emergency monitoring technology and
                  equipment of amphibious unmanned aerial vehicles (AUAV). With years of technical accumulation and tackling
                  key problems, the research team developed this AUAV-based emergency monitoring technology in January 2024.
                  The developed AUAV integrates the advantages of existing drones and unmanned boats, allowing for both land-
                  based and water-based takeoffs and landings, precise positioning, and underwater emergency measurements. This
                  breakthroughs the technical limitations of flood measurement in rivers under complex environmental conditions. The
                  AUAV adds water-based takeoffs and landings to traditional land-based operations, allowing for precise control
                  over landing positions on the water. After entering the water, the AUAV remains stable, measures parameters such
                  as water depth and flow rate, quickly collects monitoring data and then takes off directly from the water surface.
                  The AUAV is easy to operate, highly maneuverable, and well-adapted to different environments. Compared to tra⁃
                  ditional river monitoring methods, it is not easily affected by terrain or weather conditions, enabling stable opera⁃
                  tion in complex environments and providing continuous monitoring data. Furthermore, the AUAV monitoring data
                  can be transmitted wirelessly in real-time to the command center, which provides timely and accurate information
                  support for decision-makers.
                  Keywords: water depth measurement; Amphibious unmanned aerial vehicle; monitoring technology equipment;
                  wireless transmission mode
                                                                                    (责任编辑: 耿庆斋)

                                                                                                 —  4 1  —
   41   42   43   44   45   46   47   48   49   50   51