Page 112 - 水利学报2025年第56卷第4期
P. 112

[33] LIUJ,LIUC,ZHOUP,etal.Ischatgptagoodrecommender?apreliminarystudy[EB?OL].(2023 - 04 - 20)
                       [ 2024 - 10 - 16].https:??arxiv.org?abs?2304.10149.
                [34] JIZ,LEEN,FRIESKER,etal.Surveyofhallucinationinnaturallanguagegeneration[J].ACM Computing
                       Surveys,2023,55(12):1 - 38.
                [35] DAIS,SHAON,ZHAOH,etal.Uncoveringchatgpt’scapabilitiesinrecommendersystems[C]??Proceedings
                       ofthe17thACM ConferenceonRecommenderSystems.2023.
                [36] KANGW C,NIJ,MEHTAN,etal.Dollmsunderstanduserpreferences?evaluatingllmsonuserratingpredic
                       tion [EB?OL].(2023 - 05 - 10)[2024 - 10 - 15].https:??arxiv.org?abs?2305.06474.
                [37] LINJ,DAIX,XIY,etal.Howcanrecommendersystemsbenefitfrom largelanguagemodels:Asurvey[EB?
                       OL ].(2023 - 06 - 09)[2024 - 10 - 15].https:??arxiv.org?abs?2306.05817.
                [38] SANMARTIND.KG - RAG: BridgingtheGapBetweenKnowledgeandCreativity[EB?OL].(2024 - 05 - 20)
                       [2024 - 08 - 16].https:??arxiv.org?abs?2405.12035.
                [39] SHAOZ,GONGY,SHENY,etal.Enhancingretrieval - augmentedlargelanguagemodelswithiterativeretrieval -
                       generationsynergy [EB?OL].(2023 - 05 - 24)[2024 - 08 - 16].https:??arxiv.org?abs?2305.15294.
                [40] YAOS,YUD,ZHAOJ,etal.Treeofthoughts:Deliberateproblem solvingwithlargelanguagemodels[C]??
                       AdvancesinNeuralInformationProcessingSystems ,2024.
                [41] ZHANGY,WANGX,LIANGJ,etal.Chain - of - Knowledge:Integratingknowledgereasoningintolargelanguage
                       modelsbylearningfrom knowledgegraphs [EB?OL].(2024 - 06 - 30)[2024 - 08 - 13].https:??arxiv.org?abs?
                      2407.00653.
                [42] 张殿元,余传明.基于知识增强与多模态融合的医疗视觉问答模型 [J].数据分析 与 知 识 发 现,2024,8
                       (S1):226 - 239.
                [43] EVTIKHIEVM,BOGOMOLOVE,SOKOLOVY,etal.Outofthebleu:howshouldweassessqualityofthe
                       codegenerationmodels ?[J].JournalofSystemsandSoftware,2023,203:111741.



                               Multimodalknowledgegraphcollaboratedwithlargemodelfor
                                  decisionrecommendationofwaterprojectsriskresponse

                                                       1
                                         1
                                                                                            1
                                                                               1
                                                                    1,2
                             YANGYangrui,PANShifeng,LIUXuemei ,MAWei,FENGLing
                  (1.SchoolofInformationEngineering,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou 450000,China;
                          2.CollaborativeInnovationCentreforEfficientUtilizationofWaterResources,Zhengzhou 450000,China)
                  Abstract:Withthedevelopmentofwaterprojectsandtheincreasingdemandforinformatization,itbecomesin
                  creasinglycrucialtoeffectivelyprocessanduseinspectiondatafromwaterprojecttomakeriskresponsedecisions.
                  TheriskinspectiontextsoftheSouth - to - NorthWaterDiversionProjectinvolvenumerousinfluencingfactors,com
                  plexinterrelationships ,andmulti - sourceheterogeneousdata.Toeffectivelyutilizetheinspectiontextandensure
                  thetimelinessandeffectivenessoftheengineeringriskresponse ,amethodthatintegratesmultimodalknowledge
                  graphwithmultimodallargemodel (MLLM)basedoninspectiontextdataisproposed,aimingtoprovidetargeted
                  decision - makingrecommendationsforrisksintheoperationoftheSouth - to - NorthWaterDiversionProject.
                  Firstly ,theopen - sourcemultimodallargelanguagemodelVIP - LLaVA,whichfocusesmoreonregionallocations,
                  ischosenasthedialogmodel.Secondly,adomain - specificmultimodalknowledgegraphisconstructedbasedon
                  waterprojectinspectiondata.Lastly ,themultimodalknowledgegraph(MMKG)ofthewaterconservancydomain
                  isusedastheaugmentedknowledgeofthemultimodallargemodel,andtheretrievalandgenerationofcollaborative
                  anditerativeapproachisadoptedtoidentifythemostpertinentsolutionsandtoformulateriskresponsedecisions.
                  TheresultsindicatethatthemethodworkswellonBLEU,ROUGE - LandMETEORevaluationindexeswhengen
                  eratingriskresponsedecisions,andcanformulatecorrespondingresponsedecisionrecommendationstotheopera
                  tionalrisksintheprojectintime.Therelatedresearchcaneffectivelyimprovethereliabilityofengineeringsafety
                  maintenancemanagementandreducetheimpactofengineeringrisksonwatersupplysafety.
                  Keywords:multimodalknowledgegraph;multimodallargemodel;riskresponse;South - to - NorthWaterDiver
                  sionProject

                                                                                    (责任编辑:耿庆斋)

                —  5 3  —
                     0
   107   108   109   110   111   112   113   114   115   116   117