Page 37 - 2022年第53卷第6期
P. 37
生耦合系统能完全满足自给要求。
4
R = R× R× R× R 4 (23)
槡
2
3
1
( W r ) ( F pro ) ( E p ) ( H supply )
R = min1 , ;R = min1 , ;R = min1 , ;R = min1 , ; (24)
3
1
2
4
W
use F safe E use H need
式中:W 为用水量;W 为本地可供水量;F 为本地粮食产量;F 为粮食需求量;E 为能源使用
use r pro safe use
量;E为本地能源生产量(考虑京津冀能源基本依赖外部输入,因此具体计算时可采用典型年的能源
p
使用量代替,超过该典型年的能源使用量视为不可持续发展的行为);H 为生态用水量;H 为生
supply need
态需水量。
公平性指标 E通过均衡率反映,计算公式如下。在水- 粮- 能- 生各个子系统协同发展的同时,每
个计算单元间缺水率应不存在较大差异,该指标越大表明各计算单元间缺水率没有显著差异,整个系
统较为公平、均衡。
E = f(xp) (25)
2
由于协同性、可靠性和公平性 3个性能指标均为正向指标,因此在多方案比选的时候,对这三个
指标采用几何平均处理,得到综合协同指数,如下所示:
3
CSI = T × R × E (26)
槡
CSI可以用于识别不同情景水- 粮- 能- 生耦合系统协同发展结果的差异,CSI越高代表对应情景下
耦合系统可靠性越强,协同发展程度越好,在多情景比选时,应选择 CSI最好的情景作为未来发展推
荐的理想情景。
5 结论
在水- 粮- 能- 生耦合系统中,水、粮食、能源、生态四者之间存在复杂的相关关系和联动机制,
任一子系统内部要素的供求变化均会给其他子系统带来影响,因此在耦合系统定量计算和整体协同调
控等研究方面仍存在诸多不足。本文以京津冀为研究区,解析了水 - 粮 - 能 - 生子系统间的耦合关系,
构建了以自然- 社会水循环过程为核心的协同调控模型架构,通过改进 GWAS模型中的水资源调配模
块,添加粮食生产、能源消耗和层次化需水预测模块,建立了可以实现各子系统关键要素传递和动态
互馈模拟的水- 粮- 能- 生协同调控模型。同时,通过构建水安全、粮食安全、低碳发展、生态健康的
协同发展目标,将水- 粮- 能- 生四者间的互馈关系纳入区域多水源协同调控范畴,基于 NSGA - Ⅱ和耦
合协调度提出协同优化算法进行单方案寻优,并采用综合协同指数进行多情景比选寻优,提出了基于
水- 粮- 能- 生关联视角的多水源协同调控方法。研究提出的协同调控模型架构、计算原理和优化求解
等方法,可为区域水- 粮- 能- 生耦合系统可持续和协同发展研究提供理论与技术支撑。
参 考 文 献:
[ 1] CHANGY,LIGJ,YAOZ,etal.Quantifyingthewater - energy - foodnexus:currentstatusandtrends[J].En
ergies.2016 ,2(9):65 - 82.
[ 2] NationalIntelligenceCouncil.GlobalTrends2030:AlternativeWorlds[M].CenterfortheStudyofIntelligence,
2013.
[ 3] 施海洋,罗格平,郑宏伟,等.基于 “水—能源—食物—生态” 纽带因果关系和贝叶斯网络的锡尔河流
域用水分析[ J].地理学报,2020,75(5):1036 - 1052.
[ 4] DOGANM S,FEFERM A,HERMANJ,etal.Anopen - sourcePythonimplementationofCalifornia’shydro
economicoptimizationmodel[J].EnvironmentalModellingandSoftware,2018,108(10):8 - 13.
[ 5] ESCRIVA - BOUA,HUIR,MAPLESS,etal.Planningforgroundwatersustainabilityaccountingforuncertainty
andcosts : AnapplicationtoCalifornia’sCentralValley[J].JournalofEnvironmentalManagement, 2020,
— 6 6 3 —