Page 122 - 2023年第54卷第9期
P. 122

guagemodelprompts[C]??Proceedingsofthe2022CHIConferenceonHumanFactorsinComputingSystems.
                      2022.
                [21] ARORAS,NARAYANA,CHENM F,etal.AskMeAnything:Asimplestrategyforpromptinglanguagemod
                       els[EB?OL].(2022 - 11 - 20)[2023 - 01 - 23].http:??arxiv.org?abs?2210.02441.
                [22] 王一钒,李博,史话,等.古汉语实体关系联合抽取的标注方法[J].数据分析与知识发现,2021,5(9):
                      63 - 74.
                [23] SUNY,WANGS,LIY,etal.Ernie:Enhancedrepresentationthroughknowledgeintegration[EB?OL].(2019 -
                       04 - 19 )[2022 - 12 - 17].http:??arxiv.org?abs?1904.09223.
                [24] RADFORDA,WUJ,CHILDR,etal.Languagemodelsareunsupervisedmultitasklearners[J].OpenAIblog,
                      2019,1(8):9.
                [25] BROWNT,MANNB,RYDERN,etal.Languagemodelsarefew - shotlearners[J].Advancesinneuralinfor
                       mationprocessingsystems,2020,33:1877 - 1901.
                [26] HUANGQ,LIAOD,XINGZ,etal.SEFactualKnowledgeinFrozenGiantCodeModel:AStudyonFQNand
                       itsRetrieval [EB?OL].(2022 - 12 - 16)[2023 - 02 - 27].http:??arxiv.org?abs?2212.08221.
                [27] GAOT,FISCHA,CHEND.Makingpre - trainedlanguagemodelsbetterfew - shotlearners[EB?OL].(2021 - 06 -
                       02 )[2022 - 12 - 04].http:??arxiv.org?abs?2012.15723.
                [28] MISHRAS,KHASHABID,BARALC,etal.ReframingInstructionalPromptstoGPTk’sLanguage[EB?OL].
                       (2022 - 03 - 15)[2022 - 12 - 16].http:??arxiv.org?abs?2109.07830.
                [29] WANGX,WEIJ,SCHUURMANSD,etal.Self - consistencyimproveschainofthoughtreasoninginlanguage
                       models [EB?OL].(2023 - 03 - 07)[2023 - 03 - 15].http:??arxiv.org?abs?2203.11171.
                [30] HUANGC,LIC,YAOS,etal.AHybridschemeforParsingCantoneseTextBasedonPyCantonesePlusand
                       PyLTP[C]??2022EuropeanConferenceonNaturalLanguageProcessingandInformationRetrieval(ECNLPIR).
                       IEEE ,2022.
                [31] SCHEAFFERRL,MENDENHALLIIIW,OTTR L,etal.Elementarysurveysampling[M].CengageLearning,
                      2011.



                              ApplicationofAIchainintegratingcrowdintelligencestrategyin
                                             floodcontrolknowledgeinference

                                                                  1
                                                                               1,2
                                                                                            3
                                         1
                                                      1
                            YANGYangrui,ZHUYaping,CHENSisi,LIUXuemei ,LIHuimin
                  (1.SchoolofInformationEngineering,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou 450000,China;
                          2.CollaborativeInnovationCenterforEfficientUtilizationofWaterResources,Zhengzhou 450000,China;
                    3.SchoolofWaterConservancy,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou 450000,China)
                  Abstract:Floodcontrolknowledge(entitiesandrelationships)isanessentialcomponentofthefloodcontroland
                  rescuebusinessknowledgegraph.Thecomplexrelationshipsamongfloodcontrolentitiesaredistributedinunstruc
                  turedtext,andthescarcityandlowqualityofavailabletextsposechallengestoknowledgeextractioninthisfield.
                  Inresponse ,anovelapproachisproposedtouselargelanguagemodelstocompletefloodcontrolandrescueknowl
                  edgeinference(FCRKI).BasedonLLMs,threesub - modulesaredesigned:floodcontrolentityextractor,flood
                  controlentityknowledgeparser ,andfloodcontrolinter - entityrelationshipdecider.A seriesofeffectivetask
                  promptsaredesignedandconnectedtoform anAIchain.Thefloodcontrolknowledgeinferencetaskisgradually
                  completedthroughreal - timeinteractionbetweenthepromptsandLLMsintheAIchain.Furthermore ,aswarmin
                  telligencestrategyisdesignedtoenhancethereliabilityoffloodcontrolinter - entityrelationshipinference.Compa
                  ringFCRKIwithexistingmethods,experimentalresultsshowthatFCRKIhasahigheraccuracyininferringrelation
                  shipsbetweenfloodcontrolentities,verifyingtheeffectivenessoftheAIchainandswarmintelligencestrategy.This
                  newknowledgeextractionparadigmprovidesanovelsolutionforintelligentprocessingofhydraulicengineeringtexts.
                  Keywords:floodcontrolknowledgeinference;floodcontrolknowledgegraph;crowdintelligencestrategy;AIchain
                                                                                    (责任编辑:于福亮)

                —  1 1 2 —
                     3
   117   118   119   120   121   122   123   124   125   126   127