Page 76 - 2024年第55卷第5期
P. 76
toimprovethepredictionofweeklyCOVID - 19casesinGermany[J].ScientificReports,2022,12(1):3930.
[24] MEIJ,MA G, WANG Q, etal.Micro - and macroscopicaspectsoftheintermittentbehaviorsofgranular
materialsrelatedbygraphneuralnetwork[J].InternationalJournalofSolidsandStructures,2022,251:111763.
[25] MAZ,MEIG,PREZIOSOE,etal.Adeeplearningapproachusinggraphconvolutionalnetworksforslopede
formationpredictionbasedontime - seriesdisplacementdata [J].NeuralComputingandApplications,2021,33
(21):14441 - 14457.
[26] 张振东,罗斌,覃晖,等.风 光 水 互 补 系 统 时 间 序 列 变 量 概 率 预 报 框 架 [J].水 利 学 报,2022,53(8):
949 - 963.
[27] SALINASD,FLUNKERTV,GASTHAUSJ,etal.DeepAR:Probabilisticforecastingwithautoregressiverecur
rentnetworks [J].InternationalJournalofForecasting,2020,36(3):1181 - 1191.
[28] 张艺,迟世春,周雄雄.基于统计模型的高心墙堆石坝沉降变形研究 [J].水利与建 筑 工 程 学 报,2019,
17(4):141 - 146.
[29] 程光,钱德鑫,郭建伟,等.基于散 度 的 网 络 流 概 念 漂 移 分 类 方 法 [J].计 算 机 研 究 与 发 展,2020,57
(12):2673 - 2682.
[30] LIM,SHENY,REN Q, etal.A new distributedtimeseriesevolutionpredictionmodelfordam deformation
basedonconstituentelements [J].AdvancedEngineeringInformatics,2019,39:41 - 52.
Spatial - temporalfusionmodelfordeformationpredictionofrockfilldamsand
itsapplicationinsafetymonitoring
1
1,2,3
1,2,3
1,2,4
2
WUJiye,MAGang ,AIZhitao,YANGQigui ,ZHOUWei
(1.StateKeyLaboratoryofWaterResourcesEngineeringandManagement,WuhanUniversity,Wuhan 430072,China;
2.InstituteofWaterEngineeringSciences,WuhanUniversity,Wuhan 430072,China;
3.KeyLaboratoryofRockMechanicsinHydraulicStructuralEngineeringofMinistryofEducation,WuhanUniversity,Wuhan 430072,China;
4.CISPDRCorporation,Wuhan 430010,China)
Abstract:Deformationpredictionisthekeyforsafetymonitoringandhealthassessmentforrockfilldams.Current
researchmostlyfocusesonsingle - pointdeformationpredictionmodels,neglectingthemulti - pointcorrelationfor
theoverallmodeling.Besides ,itischallengingforcurrentmodelstoachievelong - termaccuratepredictionofdrift
deformationdata.Consideringtemporaldependenceoftimeseriesandspatialcorrelationbetweenmultipointforthe
deformationofrockfilldams ,aspatial - temporalfusionmodelbasedonGraphConvolutionalNetwork(GCN)and
RecurrentNeuralNetwork (RNN)isproposedfordeformationprediction,introducingprobabilisticpredictionand
full - processtraining.Firstly ,themodeladaptivelyperformsmultipointfeaturesfusionusingGCN.Then,the
transmissibilityofcellstatesandhiddenmemoriesalongthetimeaxisinRNNisutilizedtorealizetheminingand
fusionofspatial - temporalinformation.Finally ,theparametersoftheprobabilisticpredictionareobtainedaslinear
layeroutputtoimprovethemodel ’srobustnessagainstnoiseinmonitoringdata.Inordertoenhanceitsabilityto
understandtheintrinsicrelationshipbetweeninfluencingfactorsandcumulativedeformation,themodeladoptsa
full - processtrainingandinferencetechnique,whichrealizeslong - term accuratepredictionfordriftdeformation
data.TakingShuibuyaconcrete - facedrockfilldam asastudycase ,weconductcomparisonandablationexperi
ment,thenpresentthreespecificapplicationsofthismodelinsafetymonitoringandhealthassessmentforrockfill
dams.Ourresultsdemonstratethatthemodelsuccessfullyintegratesthespatial - temporalinformation ,significantly
improvingpredictionaccuracycomparedtocurrentmodels.Itaddressesthechallengesoflearningthegenerallaw
properlyandpredictingdriftdeformationdataaccuratelyofrockfilldams ,andcanbeappliedforlong - termdeform
ationprediction ,anomalydetectionandmissingdatacompletionofmeasurementpoints.
Keywords:rockfilldams;deformationprediction;spatial - temporalfusion;GraphConvolutionalNetwork;Long
andShort - TermMemoryNetwork ;probabilisticprediction
(责任编辑:韩 昆)
— 5 7 —
6