Page 67 - 2025年第56卷第1期
P. 67

114(2): 311-323.
                [ 3 ]  FARSHAD F F, RIEKE H H. Surface roughness design values for modern pipes[J]. Spe Drilling & Completion,
                      2006, 21(3): 212-215.
                [ 4 ]  郭永鑫, 郭新蕾, 杨鹏志, 等. 管道水力摩阻系数的敏感性分析[J]. 水利学报, 2019, 50(8): 1021-1028.
                [ 5 ]  贺益英, 赵懿珺, 孙淑卿, 等. 弯管局部阻力系数的试验研究[J]. 水利学报, 2003(11): 54-58.
                [ 6 ]  张昕, 纪昌知, 姜敏, 等. 相对粗糙度和雷诺数对 90° 弯管局部阻力系数的影响[ J]. 水力发电学报,
                      2013, 32(4): 88-93, 152.
                [ 7 ]  旷金国, 王朝晖, 戴明明. 区域供冷系统管路管件局部阻力系数综述[J]. 暖通空调, 2022, 52(12): 88-95.
                [ 8 ]  常胜, 牧振伟, 万连宾. 大口径玻璃钢管承插式接头局部水头损失系数探究[J]. 水利与建筑工程学报,
                      2016, 14(4): 89-92, 101.
                [ 9 ]  谭震, 郭新蕾, 李甲振, 等. 基于多尺度卷积神经网络的管道泄漏检测模型研究[J]. 水利学报, 2023,
                      54(2): 220-231.
                [ 10 ]  白兆亮, 李琳. 有压管道中孔板相对间距对局部阻力系数的影响及其机理研究[J]. 水电能源科学, 2015,
                      33(1): 177-182.
                [ 11 ]  白兆亮, 李琳. 有压输水管道孔板局部阻力相邻影响试验[J]. 水利水电科技进展, 2015, 35(2): 28-31.
                [ 12 ]  贺益英, 赵懿珺, 孙淑卿, 等. 输水管线中弯管局部阻力的相邻影响[J]. 水利学报, 2004(2): 17-20.
                [ 13 ]  JI C Z, ZHANG X, JIANG M, et al. Numerical simulation of influence of 90° bend pipeline geometric shape on
                      local head loss coefficient[C]∕∕International Conference on ICMET, Singapore, 2010.
                [ 14 ]  杨开林, 郭永鑫, 付辉, 等. 管道当量粗糙度的率定及不确定度[J]. 水利学报, 2012, 43(12): 1397-1404.
                [ 15 ]  GUO X, WANG T, YANG K, et al. Estimation of equivalent sand-grain roughness for coated water supply pipes
                      [J]. Journal of Pipeline Systems Engineering and Practice, 2020, 11(1): 04019054.
                [ 16 ]  Council of Standards Australia. Design charts for water supply and sewerage: AS 2200-2006 (R2017)[S]. Syd⁃
                      ney: Standards Australia, 2006.
                [ 17 ]  李炜, 徐孝平. 水力学[M]. 武汉: 武汉水利电力大学出版社, 1999.
                [ 18 ]  国家能源局. 火力发电厂汽水管道设计规范: DL∕T 5054—2016[S]. 北京: 中国计划出版社, 2016.
                [ 19 ]  华绍曾, 杨学宁. 实用流体阻力手册[M]. 北京: 国防工业出版社, 1985.



                                 Experimental study on minor head losses of pipeline joints

                            GUO Yongxin, GUO Xinlei, WANG Tao, FU Hui, PAN Jiajia, LI Jiazhen
                            (China Institute of Water Resources and Hydropower Research, State Key Laboratory of Simulation and
                                       Regulation of Water Cycle in River Basin, Beijing  100038, China)


                  Abstract: An internal protrusion from a pipeline joint will lower diameter and advance head loss. For the minor
                  head losses of pipeline joints, there is currently a dearth of calculation methods and experimental data. In addition
                  to establishing a pipeline head loss test rig, this paper suggests two test procedures for determining the minor head
                  loss coefficients of pipeline joints. Tests were done on the minor head loss coefficients of a push-on joint of ductile
                  iron polyethylene composite pipes and a butt fusion joint of polyethylene pipes, then the influencing factors and var⁃
                  iations of the minor head loss coefficients are analyzed. A butt fusion joint of DN150 polyethylene pipes has a
                  curved edge melt bead and a 4.36 mm internal protrusion height. The minor head loss coefficient ξ of a butt fusion
                  joint is approximately 0.086, indicating that an equivalent length of 0.75 meters would be necessary. A push-on
                  joint of DN300 ductile iron polyethylene composite pipes has a right-angle edge protective ring with an internal pro⁃
                  trusion height δ of approximately 1.93 mm. The minor head loss coefficient ξ of a push-on joint is about 0.022, in⁃
                  dicating that an equivalent length of 0.51 meters would be required. The minor head loss coefficient of a pipeline
                  joint decreases with decrease of the relative protrusion height δ∕D. The empirical formulas of minor head losses of
                  pipeline joints are given for a circular arc edge and a right angle1 edge, respectively. This research results can pro⁃
                  vide a basis for the precise hydraulic calculation of pipeline network engineering.
                  Keywords: pipeline joint; reduced diameter; head loss; minor loss coefficient; equivalent length
                                                                                    (责任编辑: 韩  昆)

                —  6 2  —
   62   63   64   65   66   67   68   69   70   71   72