Page 128 - 水利学报2025年第56卷第3期
P. 128

2022,46(1):15 - 24.
                [16] LIKERA,BARTAZ.Theeffectsofdominanceonsocialforagingtacticuseinhousesparrows[J].Behaviour,
                      2002,139(8):1061 - 1076.
                [17] 李楠,薛建凯,舒慧生.基于自适应 t分布变异麻雀搜索算法的无人机航迹规划[J].东华大学学报(自然
                       科学版),2022,48(3):69 - 74.
                [18] 周广得,吕小龙,黄丹,等.基于 Kriging代理模型的迭代更新高效反演方法 [J].计算力学学报,2023,
                      40(4):602 - 607.
                [19] 刘瑞江,张业旺,闻 崇 炜,等.正 交 试 验 设 计 和 分 析 方 法 研 究 [J].实 验 技 术 与 管 理,2010,27(9):
                      52 - 55.
                [20] DRAGONMIRETSKIYK,ZOSSOD.Variationalmodedecomposition[J].IEEETransactionsSignalProcessing,
                      2014,62(3):531 - 544.
                [21] SANGS,SHIK,LIK,etal.Short - termwindpowerpredictionbasedonEVMD - SSA - LSSVM Model[C]??2023
                      3rdNewEnergyandEnergyStorageSystem ControlSummitForum (NEESSC).IEEE,2023.




                            Studyontheseepagepredictionmodelofearth - rockdamsbasedon
                                      mechanism- datafusionandresidualcorrection
                                                                1,2
                                                                                1,2
                                   1
                                                 1,2,3
                     HUANGHaoran,GUYanchang         ,CHENSiyu ,WANGShijun ,HUANGHaibing           1,2
                         (1.DamSafetyandManagementDepartment,NanjingHydraulicResearchInstitute,Nanjing 210029,China;
                             2.DamSafetyManagementCenteroftheMinistryofWaterResources,Nanjing 210029,China;
                        3.KeyLaboratoryofFlood&DroughtDisasterDefenseoftheMinistryofWaterResources,Nanjing 210029,China)
                  Abstract:Themechanisticmodelscanpredictandevaluatetheseepagesafetystateofearth - rockdams,whichof
                  ferclearphysicalmeaningandgoodinterpretations ,buttheirpredictionaccuracyfluctuatesgreatly.Toenhance
                  thisaccuracy ,afusionmodelthatincorporatesadata - drivendeeplearningapproachwasintroduceinthisstudy,
                  andtheSparrowSearchAlgorithm(SSA)andRadialBasisFunction(RBF)wereemployedtoinvertthepermea
                  bilitycoefficient.ThisprocessconstructsanSSA - RBFsurrogatemodelforpredictingseepagepressure,yielding
                  boththemodel ’ spredictivevaluesandaresidualsequence.Then,theresidualsequencewasdecomposedbyu
                  singVariationalModeDecomposition (VMD),trainingaLongShort - TermMemory(LSTM)neuralnetworktoob
                  tainamodelforcorrectingtheresidualsequence.Byoverlayingthemechanisticmodelwiththedata - drivenmodel,
                  anSSA - RBF - VMD - LSTMfusionmodelwasconstructed,whichenablesaccuratepredictionsofseepagewaterlev
                  els.Theengineeringcasedemonstratesthatthemodelproposedinthispaperpossesseshighpredictiveaccuracy,
                  withimprovementsof89.64%,69.59%,and60.45% inpredictionaccuracycomparedtostatisticalmodels,
                  LSTM models,andSSA - RBF - LSTM models,respectively.Notably,evenwhentheseepageprocesslineunder
                  goessignificantfluctuations ,themodelisstillcapableofprovidingtimelyandaccuratepredictions,showcasing
                  goodstabilityandextrapolationcapabilities.Theseattributesmakethemodelworthyofpracticalapplicationand
                  dissemination.
                  Keywords:earth - rockdam;surrogatemodels; sparrow searchalgorithm; VariationalModalDecomposition;
                  LSTM neuralnetworks;mechanism - data - drivenfusion


                                                                                    (责任编辑:李 娜)














                —  4 1  —
                     0
   123   124   125   126   127   128   129   130   131   132   133