Page 51 - 2023年第54卷第3期
P. 51

[18] 刘媛媛,刘业森,郑敬伟,等.BP神经网络和数值模型相结合的城市内涝预测方法研究[J].水利学报,
                      2022,53(3):284 - 295.
                [19] 刘鲭洁,陈桂明,刘小方,等.BP神经网络权重和阈值初始化方法研究[J].西南师范大学学报(自然科
                       学版),2010,35(6):137 - 141.
                [20] 张忠波,何晓燕,耿思敏,等.改进的粒子群算法在水库优化调度中应用[J].中国水利水电科学研究院
                       学报,2017,15(5):338 - 345.
                [21] 陈博文,邹海.总结性自适应变异的粒子群算法[J].计算机工程与应用,2022,58(8):67 - 75.
                [22] 仝秋娟,赵岂,李萌.基于自适应动态改变的粒子群优化算法[J].微电子学与计算机,2019,36(2):6 -
                       10,15.
                [23] 黄璇,郭立红,李姜,等.改进粒子群优化 BP神经网络的目标威胁估计 [J].吉林大学学 报 (工 学 版),
                      2017,47(3):996 - 1002.
                [24] 韩信,张宝忠,魏征,等.考虑气象因子不确定性的参考作物蒸散量预报方法[J].中国水利水电科学研
                       究院学报,2021,19(1):33 - 44.
                [25] 王维博,林川,郑永康.粒子群算法中参数的实验与分析 [J].西华大学学报 (自 然 科 学 版),2008(1):
                      76 - 80,105 - 106.
                [26] 龙远,邓小龙,杨希祥,等.基于 PSO - BP神经网络的平流层风场短期快速预测[J].北京航空航天大学
                       学报,2022,48(10):1970 - 1978.
                [27] 高昶霖,宋燕利,左洪洲,等.基于动态权重的自适应 PSO - BP神经网络焊接缺陷成因诊断[J].焊接学
                       报,2022,43(1):98 - 106.
                [28] COURTICEG,BAUERB,CAHILLC,etal.Acategoricalassessmentofdose - responsedynamicsformanaging
                       suspendedsedimenteffectsonsalmonids[J].ScienceoftheTotalEnvironment,2020(807):150844.
                [29] XUF,BAOLIGAOB,CHENX,etal.Shortinformativetitle:Quantitativeassessmentofacuteimpactsofsus
                       pendedsedimentoncarpintheYellowRiver[J].RiverResearchandApplications,2018,34:1298 - 1303.
                [30] TRITTHARTM,HAIMANNM,HABERSACKH,etal.Spatio - temporalvariabilityofsuspendedsedimentsinrivers
                       andecologicalimplicationsofreservoirflushingoperations[J].RiverResearchandApplications,2019,35:918 - 931.

                       Apredictionmethodfortheimpactofhyper - concentratedflowonfishesbased
                                             ontheIPSO- BPneuralnetwork

                            1
                                                                                      1
                                                                       1
                                           1
                                                          2
                                                                                                      1
                  LIXiaochen,Baiyinbaoligao,LIXiangdong,XUFengran,MUXiangpeng,DONGZhiqiang
                                 (1.StateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,
                                 ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing 100038,China;
                         2.QinghaiInstituteofWaterConservancyandHydro - electricpowerDesignCo.,Ltd,Xining 810001,China)
                  Abstract:Thehyper - concentratedflowprocessmaycausenegativeimpactsonfishesandotheraquaticanimals
                  duringreservoirsedimentflushing.Nevertheless ,thereisalackofstudiesoncorrespondingquantitativeassessment
                  methodsforthedegreeofimpactofthehyper - concentratedflow.Inordertopredictandevaluatetheimpactofres
                  ervoirsedimentdischargeprocessesondownstream fish , thispaperusesexperimentaldatafrom thestudyof
                  survivalcharacteristicsofYellowRiver GymnocyprisEckloniandCyprinusCarpioinhyper - concentratedflowand
                  establishedanIPSO - BPneuralnetwork - basedmethodforpredictingtheimpactonfishmortality ,andtakesinto
                  accounttheeffectsofsuspendedsedimentconcentration,medianparticlesize,dissolvedoxygen,exposuretime,
                  watertemperature,andotherfactorsonfishsurvival.Thepredictionerrorofthetargetfishmortalityislessthan
                  6%.Inthispaper,theIPSOalgorithm,whichiscloselycoupledwithBPneuralnetworkandintroducesdynamic
                  parametersandvariationalperturbations ,hasbetterpredictionabilitythanBPandPSO - BPneuralnetworks,and
                  itsaccuracyissignificantlyimprovedwhencomparedtoexistingStressIndex(SI),SeverityofIllEffect(SEV),
                  andmultivariatefittingevaluationmethodsathomeandabroad.Theanalysisdemonstratesthatthepredictionmeth
                  odproposedinthispapercanaccountforthesituationinwhichfishmortalityinhyper - concentratedflowisgov
                  ernedbyacombinationofmultipleenvironmentalfactorswithcomplexcorrelationsamongmultiplefactors.Thispa
                  perprovidesanewmethodforassessingtheimpactofhyper - concentratedflowonfishes.
                  Keywords:IPSO - BPneuralnetwork;hyper - concentratedflow;fish;mortality;predictionmethod

                                                                                    (责任编辑:韩 昆)

                                                                                                —  3 0 1 —
   46   47   48   49   50   51   52   53   54   55   56