Page 69 - 2023年第54卷第9期
P. 69

roughset[J].WaterScienceandTechnology,2015,71(10):1507 - 1515.
                [19] 郑彦辰,李建柱,荣佑同,等.降雨时空分布量化及其在洪水过程分 类 中 的 应 用 [J].水 利 学 报,2022,
                      53(5):560 - 573.
                [20] WANGW, HUANG Y, WANG Y, et al.Generalized autoencoder: A neural network framework for
                       dimensionalityreduction [C]??ProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognitionwork
                       shops.2014.
                [21] 刘可新,包为民,阙家骏,等.基于主成分分析的 K均值聚类法在洪水预报中的应用[J].武汉大学学报
                       (工学版),2015,48(4):447 - 450,458.
                [22] 陈建强.基于卷积神经网络的海洋次表层叶绿素遥感反演研究[D].青岛:青岛科技大学,2022.
                [23] 刘玉驰,蒋玉峰,王树青,等.基于数据融合及残差卷积自编码器的结构损伤识别方法[J].振动与冲击,
                      2023,42(4):194 - 203.
                [24] 杨亚兰,李晨鑫,秦毓毅,等.基于卷积变 分 自 编 码 器 的 日 负 荷 曲 线 聚 类 研 究 [J?OL].现 代 电 力:1 - 9
                       [2023 - 03 - 31].https:??doi.org?10.19725?j.cnki.1007 - 2322.2022.0076.
                [25] 陈立,魏钰欣,刘斌.基 于 生 成 对 抗 网 络 与 ResUNet的 细 胞 核 图 像 分 割 [J].光 电 子 · 激 光,2023,34
                       (5):473 - 481.
                [26] GIRSHICKR.Fastr - cnn[C]??ProceedingsoftheIEEEinternationalconferenceoncomputervision.2015:1440 -
                       1448.




                       ResearchonfloodclassifiedintelligentforecastingmethodbasedonAE - RCNN
                                                                      3
                                                                                     1,2
                                                                                                   4
                                                          1,2
                                 1,2
                                          1,2
                      YUANXimin ,LIDa ,TIANFuchang ,HELixin,WANGXiujie ,GUOLibing
                      (1.StateKeyLaboratoryofHydraulicEngineeringSimulationandSafety,TianjinUniversity,Tianjin 300350,China;
                                    2.SchoolofCivilEngineering,TianjinUniversity,Tianjin 300350,China;
                       3.SchoolofWaterConservancyandHydroelectricpower,HebeiUniversityofEngineering,Handan 075000,China;
                        4.FloodandDroughtDisasterPreventionCenterofNingxiaHuiAutonomousRegion,Yinchuan 750002,China)
                  Abstract:Hierarchicalfloodforecastingmethodinareaswithcomplexflowgenerationandconfluencecharacteris
                  ticscanimproveforecastaccuracy.Thispaperproposesahierarchicalintelligentfloodforecastingmethodbasedon
                  autoencoder(AE)andresidualconvolutionalneuralnetwork(RCNN),usingautoencoderandK - meansclustering
                  algorithmtorealizefeatureextractionandfloodclassificationofhydrologicaldata ,usingtheRCNNmodeltoim
                  provetheeffectivetrainingdepthoftheconvolutionalneuralnetwork.TakingtheHuangtaiqiaoHydrologicalStation
                  intheXiaoqingRiverBasininShandongProvinceasanexample ,theresearchonfloodclassificationintelligent
                  forecastingwascarriedout.TheresultsshowthattheMAEindex,RMSEindex,andNSEindexoftheAE - RCNN
                  modelapplyingtheclusteringofdownscaleddataare5.04 ,7.91and0.92,respectively,whicharebetterthanthe
                  CNNmodel ,RCNNmodel,andrainfallclusteringRCNNmodel.Thismethodcaneffectivelyextractthecharac
                  teristicsofhydrologicaldataandimprovetheaccuracyoffloodforecasting.
                  Keywords:hierarchicalintelligentfloodforecasting;AE - RCNN;data - drivenmodel;autoencoder;residual
                  convolutionalneuralnetwork


                                                                                    (责任编辑:耿庆斋)
















                                                                                                   0
                                                                                              —   1 7 9 —
   64   65   66   67   68   69   70   71   72   73   74