Page 79 - 水利学报2025年第56卷第4期
P. 79
/
[ 2 ] RAY L I P. Efficient water utilization through gravity-fed drip irrigation for hill region[C]/Conservation Agriculture
for Advancing Food Security in Changing Climate. 2017.
.
[ 3 ] 崔磊 . 自压滴灌技术在农田灌溉中的应用研究[J] 智慧农业导刊,2023,3(17):62-65.
[ 4 ] 赵继春,王国杰,王敏,等 . 基于嵌入式的农田灌溉管网漏损智能无线监测系统设计[J] 中国农机化学报,
.
2021,42(9):170-176.
[ 5 ] 魏玲,郭彦婷 . 基于 ZigBee 的灌溉管道泄漏监测系统的设计[J] 中国农机化学报,2014,35(3):234-238.
.
.
[ 6 ] 谭震,郭新蕾,李甲振,等 . 基于多尺度卷积神经网络的管道泄漏检测模型研究[J] 水利学报,2023,54
(2):220-231.
[ 7 ] MOMENI A, PIRATLA K R, CHALIL M K. Application of neural network-based modeling for leak localization in
.
water mains[J] Journal of Pipeline Systems Engineering and Practice,2022,13(4):04022032.
[ 8 ] GOODWIN S J. The results of the experimental programme on leakage and leakage control[R] Swindon, United
.
Kingdom:Water Res. Centre,1980.
[ 9 ] 王俊岭,吴宾,聂练桃,等 . 基于神经网络的管网漏失定位实例研究[J] 水利水电技术,2019,50(4):
.
47-54.
[ 10] OLADELE E M,BABATOLA J O,AGBOLADE O A. Detection of leakages in a pipeline network based on hydrau⁃
lic laboratory modelling with artificial intelligence[J] Journal of Applied Sciences and Environmental Management,
.
2023,27(8):1793-1800.
[ 11] 卓 美 燕 , 林 文 介 . 基 于 机 器 学 习 的 跨 海 管 道 泄 漏 位 置 预 测 模 型[J] 水 利 水 电 科 技 进 展 , 2022, 42(3):
.
45-50.
[ 12] MASHFORD J,DE S D,MARNEY D,et al. An approach to leak detection in pipe networks using analysis of moni⁃
/
tored pressure values by support vector machine[C]/2009 Third International Conference on Network and System
Security. IEEE,2009.
[ 13] 冉雨晴,吴玮,狄鑫 . 基于遗传算法优化 BP 神经网络的管网漏失定位模型研究[J] 水电能源科学,2021,
.
39(5):123-126,122.
[ 14] 李东升,朱奎,郭艳军,等 . 组合神经网络的城市用水量预测模型研究与应用 [J] . 中国水利水电科学研究
院学报 (中英文),2024,22 (6):579-589.
[ 15] 许泽海,赵燕东 . 融合物联网多环境参数的茎干水分 SSA-BP 预测模型[J] 农业工程学报,2023,39(16):
.
150-159.
[ 16] 李思宇,李玥 . 基于 KPCA-SSA-BP 的农业气象灾害预测[J] 江苏农业学报,2023,39(6):1366-1371.
.
[ 17] GUO J Q, XI W F, YANG Z Q, et al. Landslide hazard susceptibility evaluation based on SBAS-InSAR technol⁃
.
ogy and SSA-BP neural network algorithm: A case study of Baihetan Reservoir Area[J] Journal of Mountain Sci⁃
ence,2024,21(3):952-972.
[ 18] WANG J,WANG H,NIE L. Hydraulic simulation of water supply network leakage based on EPANET[J] Journal
.
of Pipeline Systems Engineering and Practice,2024,15(1):05023006.
[ 19] MASHHADI N,SHAHROUR I,ATTOUE N,et al. Use of machine learning for leak detection and localization in
.
water distribution systems [J] Smart Cities,2021,4(4):1293-1315.
[ 20] TAGHLABI F, SOUR L, AGOUMI A. Prelocalization and leak detection in drinking water distribution networks
using modeling-based algorithms:A case study for the city of Casablanca (Morocco)[J] Drinking Water Engineer⁃
.
ing and Science,2020,13(2): 29-41.
[ 21] FUENTES V C, PEDRASA J R I. Leak detection in water distribution networks via pressure analysis using a
/
machine learning ensemble[C]/International Conference on Society with Future:Smart and Liveable Cities. 2019.
[ 22] 狄鑫 . 基于水力模型的供水管网漏损控制研究[D] 苏州:苏州科技大学,2019.
.
[ 23] 宋琪 . 复杂管网泄漏诊断及基于神经网络的定位研究[D] 吉林:东北电力大学,2022.
.
[ 24] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]
.
Nature,1986,323(6088):533-536.
[ 25] 李晓晨,白音包力皋,李向东,等 . 基于 IPSO-BP 神经网络的高含沙水体对鱼类影响预测方法[J] 水利学
.
报,2023,54(3):291-301.
[ 26] 孟志军,刘淮玉,安晓飞,等 . 基于 SPA-SSA-BP 的小麦秸秆含水率检测模型[J] 农业机械学报,2022,53
.
— 497 —