Page 64 - 2025年第56卷第5期
P. 64

2022,51(10):122 - 129.
                [10] YANGY,LIUA,XINH,etal.Faultearlywarningofwindturbinegearboxbasedonmulti - inputsupportvector
                       regressionandimprovedantlionoptimization [J].WindEnergy,2021,24(8):812 - 832.
                [11] ZHANGR,ZHOUQ,TIANL,etal.Anoveloutlierdetectionmodelforvibrationsignalsusingtransformernet
                       works[J].IEEEAccess,2022,10:57234 - 57241.
                [12] 杨茂,张书天,王勃,等.基于门控循环加权共形分位数回归的风电功率短期区间预测[J?OL].中国电机工
                       程学报,2024.(2024 - 09 - 11)[2024 - 12 - 17].http:??kns.cnki.net?kcms?detail?11.2107.tm.20240910.1548.004.html.
                [13] MATHONSITHABANG,VANZYL.Multivariateanomalydetectionbasedonpredictionintervalsconstructedusing
                       deeplearning [J?OL].NeuralComputingandApplications,2022.(2022 - 01 - 03)[2024 - 05 - 12].https:??link.
                       springer.com?article?10.1007?s00521 - 021 - 06697 - x.
                [14] LIY.Anomalydetectioninwirelesssensornetworksbasedontimefactor[J].JournalofIntelligent& FuzzySys
                       tems,2019,37(4):4639 - 4645.
                [15] PANGJ,LIUD,PENGY,etal.Optimizethecoverageprobabilityofpredictionintervalforanomalydetectionof
                       sensor - basedmonitoringseries [J].Sensors,2018,18(4):967.
                [16] 余宇峰,朱跃 龙,万 定 生,等.基 于 滑 动 窗 口 预 测 的 水 文 时 间 序 列 异 常 检 测 [J].计 算 机 应 用,2014,
                      34(8):2217 - 2220,2226.
                [17] DEWOLFN,BAETSBD,WAEGEMANW.Validpredictionintervalsforregressionproblems[J].ArtificialIn
                       telligenceReview ,2023,56(1):577 - 613.
                [18] STEINWARTI,CHRISTMANN A.Estimating conditionalquantileswith the help ofthe pinballloss[J].
                       Bernoulli ,2011,17(1):211 - 225.
                [19] CHENX,ZHAN Y.Multi - scaleanomalydetectionalgorithm basedoninfrequentpatternoftimeseries[J].
                       JournalofComputationalandAppliedMathematics,2008,214(1):227 - 237.
                [20] 王彦兵,王聪,赵亚丽,等.基于 ROC曲线的永久散射体识别最佳阈值定量筛选 [J].遥感学报,2021,
                      25(10):2083 - 2094.
                [21] 曲力涛,潘罗平,曹登峰,等.基于振动能量趋势预测和 K均值聚类的水电机组故障预警方法研究 [J].
                       水力发电,2019,45(5):98 - 102.



                 Adynamicintervalcoveragemethodfordetectingabnormalvibrationofhydroelectricunits

                                                   1
                                                                                    1
                                 1
                                                                1
                                                                         1
                       WANGKun,WANGShaoqiang,XIONGXing,LIAng,QIUXudi,WANGBin                     1,2
                       (1.CollegeofWaterResourcesandArchitecturalEngineering,NorthwestA&FUniversity,Yangling 712100,China;
                                2.KeyLaboratoryofAgriculturalSoilandWaterEngineeringinAridandSemiaridAreas,
                                   MinistryofEducation,NortheastA&FUniversity,Yangling 712100,China)
                  Abstract:Abnormaldetectioninhydropowerunitsiscrucialfortheirstableoperation.Existinganomalydetection
                  methodsbasedonpointpredictionsoftenfailtoadequatelyaddressdatainstabilityandmodellimitations.Thispaper
                  proposesadynamicintervalcoveragemethodfordetectingvibrationanomaliesinhydroelectricunits.Initially ,an
                  intervalpredictionmodelisconstructedusingdirectintervalestimationandquantilelossasthelossfunctiontotrain
                  themodel.Adynamicintervalcoveragerateisthendevelopedbyintegratingaslidingwindowwithintervalcoverage
                  rateofthemodelevaluationindex.Subsequently ,thereceiveroperatingcharacteristiccurveisutilizedformodele
                  valuationandoptimalthresholddetermination.Thismethodallowsforflexibleadjustmentofdetectionintensity
                  throughconfidencelevel ,slidingwindowwidth,andstepsize.Tovalidatetheeffectivenessoftheproposedmeth
                  od ,simulationexperimentsareconductedusingbothsimulatedandrealanomalydataofhydroelectricunits.The
                  experimentalresultsindicatethatthismethodachievestruepositiveratesandfalsepositiveratesof1.0and0.015,
                  respectively,onsimulateddataset,and0.979and0.053onanother,accuratelyidentifyingvibrationanomaliesin
                  hydropowerunits.Thisapproachprovidesanewtechnologicalmeansforanomalydetectioninhydropowerunits.
                  Keywords:hydroelectricunits; abnormaldetection; intervalprediction; slidingwindow; receiveroperating
                  characteristiccurve

                                                                                    (责任编辑:王 婧)

                —  6 1  —
                     0
   59   60   61   62   63   64   65   66   67   68   69