Page 17 - 水利学报2021年第52卷第6期
P. 17
[ 6 ] QIAN L X,WANG H R,DANG S Z,et al . Modelling bivariate extreme precipitation distribution for data-scarce
regions using Gumbel-Hougaard copula with maximum entropy estimation[J]. Hydrological Processes,2018,32
(2):212-227 .
[ 7 ] LIAO K H . A theory on urban resilience to floods-a basis for alternative planning practices[J]. Ecology and Soci⁃
ety,2012,17(4):48 .
[ 8 ] LIU D D, CHEN X H, NAKATO T . Resilience assessment of water resources system[J]. Water Resources Man⁃
agement,2012,26(13):3743-3755 .
[ 9 ] 周晓芳 . 社会-生态系统恢复力的测量方法综述[J]. 生态学报,2017,37(12):4278-4288 .
[ 10] 俞孔坚,许涛,李迪华,等 . 城市水系统弹性研究进展[J]. 城市规划学刊,2015(1):75-83 .
[ 11] ALESSA L,KLISKEY A,LAMMERS R,et al . The arctic water resource vulnerability index:An integrated as⁃
sessment tool for community resilience and vulnerability with respect to freshwater[J]. Environmental Manage⁃
ment,2008,42(3):523-541 .
[ 12] SANDOVAL-SOLIS S,MCKINNEY D C,LOUCKS D P . Sustainability index for water resources planning and
management[J]. Journal of Water Resources Planning and Management,2011,137(5):381-390 .
[ 13] YANG J,YANG Y C E,KHAN H F,et al . Quantifying the sustainability of water availability for the wa⁃
ter-food-energy-ecosystem nexus in the Niger River Basin[J]. Earth's Future,2018,6(9):1292-1310 .
[ 14] HUANG W J,LING M Z . System resilience assessment method of urban lifeline system for GIS[J]. Computers,
Environment and Urban Systems,2018,71(9):67-80 .
[ 15] 王红瑞,钱龙霞,赵自阳,等 . 水资源风险分析理论及评估方法[J]. 水利学报,2019,50(8):980-989 .
/
[ 16] YAGER R R . Pythagorean fuzzy subsets[C]/Proceedings of the Joint IFSA World Congress and NAFIPS Annual
Meeting, Edmonton,AB,Canada,2013 .
[ 17] YAGER R R,ABBASOV A M . Pythagorean membership grades,complex numbers,and decision making[J]. In⁃
ternational Journal of Intelligent Systems,2013,28(5):436-452 .
[ 18] YAGER R R . Pythagorean membership grades in multicriteria decision making[J]. IEEE Transactions on Fuzzy
Systems,2014,22(4):958-965 .
[ 19] ZHANG X L,XU Z S . Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets[J].
International Journal of Intelligent Systems,2014,29(12):1061-1078 .
[ 20] ZHANG X L . A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision
making[J]. International Journal of Intelligent Systems,2016,31(6):593-611 .
[ 21] MA Z M,XU Z S . Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in
multicriteria decision-making problems[J] . International Journal of Intelligent Systems,2016,31(12):
1198-1219 .
[ 22] REN P J,XU Z S,GOU X J . Pythagorean fuzzy TODIM approach to multi-criteria decision making[J]. Applied
Soft Computing,2016,42:246-259 .
[ 23] 李德清,曾文艺,尹乾 . 勾股模糊集的距离测度及其在多属性决策中的应用[J]. 控制与决策,2017,32
(10):1817-1823 .
[ 24] GUL M,AK M F,GUNERI A F . Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine in⁃
dustry[J]. Journal of Safety Research,2019,69(6):135-153 .
[ 25] LIANG D C,ZHANG Y R J,XU Z S,et al . Pythagorean fuzzy VIKOR approaches based on TODIM for evaluat⁃
ing internet banking website quality of Ghanaian banking industry[J]. Applied Soft Computing Journal,2019,
(78):583-594 .
[ 26] RANI P,MISHRA A R,PARDASANI K R,et al . A novel VIKOR approach based on entropy and divergence
measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India[J]. Journal of Cleaner Pro⁃
duction,2019,238(11):117936 .
[ 27] 陈守煜 . 工程可变模糊集理论与模型——模糊水文水资源学数学基础[J]. 大连理工大学学报,2005,45
(2):308-312.
[ 28] 陈守煜 . 可变集及水资源系统优选决策可变集原理与方法[J]. 水利学报,2012,43(9):1066-1074 .
[ 29] 邱庆泰,王刚,王维,等 . 基于可变集的区域水资源全要素配置方案评价[J]. 南水北调与水利科技,2016,
— 645 —