Page 41 - 2021年第52卷第7期
P. 41
把 x ˉ = u 、 η ˉ = 0 、 x = η + u 代入上式,可得:
t
t
t
n n
)
å η + (u - u η t
å
2
t
t
r = t = 1 t = 1 (4)
n 2 n 2
)
å( x - x ˉ å(η - η ˉ )
t
t
t = 1 t = 1
式中:
n
)
)
u
η
η
å(u - u η = nE (u η - uη = nE ( )E ( ) - nuE ( ) = 0 (5)
t
t
t
t
t
t
t
t
t = 1
因此,由式(4)可得:
σ 2
r = η (6)
2
σ x 2
2
式中 σ 与 σ 分别为 η 和 x 的方差,它们之间具有以下关系:
2
η
x
t
t
σ 2 = σ 2 + σ 2 (7)
x η u
式中 σ 2 为纯随机序列的方差,根据式(6)和式(7)可得:
u
σ 2
r = 1 - u (8)
2
σ 2
x
将式(1)进行移项并整理得:
x - u = φ ( x t - 1 - u ) + φ ( x t - 2 - u ) + ⋯ + φ ( x t - p - u ) + ε - θ ε t - 1 - θ ε t - 2 - ⋯ - θ ε t - q (9)
t
t
q
p
1
1
2
2
将式(9)两边同乘以 x - u 并取数学期望得:
t
é
2
E ( x - u ) = φ E [( x - u )( x - u ] ) + φ E [( x - u )( x - u ] ) + ⋯ + φ E ( x - u )( x - u ) ù
t 1 t - 1 t 2 t - 2 t p ë t - p t û (10)
]
)
)
)
)
+E [( x - u ε - θ E [( x - u ε ] - θ E [( x - u ε ] - ⋯ - θ E [( x - u ε ]
t t 1 t t - 1 2 t t - 2 q t t - q
2
上式两端除以 σ 后考虑到自相关系数的定义:
x
E [( x t - i - u )( x - u ] )
t
= ρ ,ρ = 1 (11)
i
σ x 2 0
可得:
]
)
)
)
E [( x - u ε - θ E [( x - u ε ] - ⋯ - θ E [( x - u ε ]
1 - ρ φ - ρ φ - ⋯ - ρ φ = t t 1 t t - 1 q t t - q (12)
σ x
1 1 2 2 p p 2
式(12)两端再同乘以 σ 可得:
2
x
]
)
)
)
)
( 1 - ρ φ - ρ φ - ⋯ - ρ φ σ = E [( x - u ε - θ E [( x - u ε t - 1 ] - ⋯ - θ E [( x - u ε t - q ] (13)
2
t
t
t
q
p
p
x
t
1
1
1
2
2
将式(9)两边同乘以 ε 并取数学期望得:
t
]
)
é
ù
E [( x - u ε = φ E [( x t - 1 - u )ε t ] + φ E [( x t - 2 - u )ε t ] + ⋯ + φ E ( x t - p - u ) ε +
ë
û
p
t
t
t
2
1
ε
E ( ) - θ E (ε ε t - 1 ) - θ E (ε ε t - 2 ) - ⋯ - θ E ( ε ε t - q ) = E ( ) = σ ε 2 (14)
ε
2
2
q
t
t
t
t
t
2
1
将式(9)两边同乘以 ε 并取数学期望得:
t - 1
)
é
E [( x - u ε t - 1 ] = φ E [( x t - 1 - u )ε t - 1 ] + φ E [( x t - 2 - u )ε t - 1 ] + ⋯ + φ E ( x t - p - u ) ε t - 1 ù û +
ë
t
p
2
1
E (ε ε t - 1 ) - θ E ( ε t - 1 ) - θ E (ε t - 1 ε t - 2 ) - ⋯ - θ E ( ε t - 1 ε t - q ) = -θ E ( ε t - 1 ) = -θ σ ε 2 (15)
2
2
q
t
1
1
2
1
同理,依此类推,直至将式(9)两边同乘以 ε t - q 再取数学期望得:
)
é
E [( x - u ε t - q ] = φ E [( x t - 1 - u )ε t - q ] + φ E [( x t - 2 - u )ε t - q ] + ⋯ + φ E ( x t - p - u ) ε t - q ù û +
ë
p
t
1
2
E ( ε ε t - q ) - θ E ( ε t - 1 ε t - q ) - θ E ( ε t - 2 ε t - q ) - ⋯ - θ E ( ε t - q ) = -θ E ( ε t - q ) = -θ σ ε 2 (16)
2
2
q
q
q
t
2
1
— 795 —