Page 50 - 2022年第53卷第9期
P. 50
datingalgorithm[J].JournalofZhejiangUniversity - SCIENCEA,2018,19(7):505 - 520.
[24] 关涛.高拱坝施工进度自适应仿真与实时控制理论及应用[D].天津:天津大学,2016.
[25] WANGQ,ZHONGD,WUB,etal.Constructionsimulationapproachofroller - compactedconcretedam based
onreal - timemonitoring[J].JournalofZhejiangUniversity - SCIENCEA,2018,19(5):367 - 383.
[26] ZHANGJ,YUJ,GUANT,etal.AdaptivecompactionconstructionsimulationbasedonBayesianFieldTheory
[J].Sensors,2020,20(18):5178.
[27] 王国浩,余佳,王晓玲,等.高拱坝施工仿真参数 EMD - P - ILSTM动态更新模型研究[J].水力发电学报,
2021,40(12):106 - 118.
[28] 储志强.基于混沌差分进化支持向量机的高拱坝施工仿真优化研究[D].天津:天津大学,2018.
[29] 肖尧,钟登华,王 栋,等.基 于 ACDE - SVM 的 引 水 隧 洞 施 工 仿 真 参 数 动 态 更 新 [J].水 力 发 电 学 报,
2019,38(4):234 - 245.
[30] 张君,余佳,任炳 昱,等.考 虑 高 寒 低 温 影 响 的 高 心 墙 堆 石 坝 仓 面 施 工 仿 真 模 型 研 究 [J].水 利 学 报,
2022,53(2):200 - 211.
[31] WANGD,WANGX,RENB,etal.Vision - basedproductivityanalysisofcablecranetransportationusingaugmen
tedreality - basedsyntheticimage [J].JournalofComputinginCivilEngineering,2022,36(1):04021030.
[32] LF,WANGJ,CUIB,etal.Animprovedextremegradientboostingapproachtovehiclespeedpredictionfor
constructionsimulationofearthwork [J].AutomationinConstruction,2020,119:103351.
[33] AKHAVIANR,BEHZADANAH.Constructionequipmentactivityrecognitionforsimulationinputmodelingusing
mobilesensorsandmachinelearningclassifiers [J].AdvancedEngineeringInformatics,2015,29(4):867 - 877.
[34] AKHAVIANR,BEHZADANAH.Productivityanalysisofconstructionworkeractivitiesusingsmartphonesensors
[C]??Proceedingsofthe16thInternationalConferenceonComputinginCivilandBuildingEngineering(ICCCBE),
Osaka,Japan,2016:1067 - 1074.
[35] NATH N D,SHRESTHA P,BEHZADAN A H.Humanactivityrecognitionandmobilesensingforconstruction
simulation [C].2017WinterSimulationConference(WSC).IEEE,2017:2448 - 2459.
[36] SHERAFATB, AHN C R, AKHAVIAN R, etal.Automatedmethodsforactivityrecognitionofconstruction
workersandequipment: State - of - the - artreview[J].JournalofConstructionEngineeringandManagement,
2020,146(6):03120002.
[37] SHERAFATB, RASHIDIA, LEE Y C, etal.A hybrid kinematic - acousticsystem forautomated activity
detectionofconstructionequipment[J].Sensors,2019,19(19):4286.
[38] KIM J,CHIS,AHNCR.Hybridkinematic - visualsensingapproachforactivityrecognitionofconstructionequip
ment [J].JournalofBuildingEngineering,2021,44:102709.
[39] ORD EZFJ,ROGGEND.Deepconvolutionalandlstm recurrentneuralnetworksformultimodalwearableac
tivityrecognition [J].Sensors,2016,16(1):115.
[40] SLATONT,HERNANDEZC,AKHAVIANR.Constructionactivityrecognitionwithconvolutionalrecurrentnet
works[J].AutomationinConstruction,2020,113:103138.
[41] 王佳俊.心墙堆石坝坝面碾压智能监控方法与应用研究[D].天津:天津大学,2019.
[42] BAYATA,POMPLUNM,TRANDA.Astudyonhumanactivityrecognitionusingaccelerometerdatafromsmar
tphones [J].ProcediaComputerScience,2014,34:450 - 457.
[43] PICZAKKJ.Environmentalsoundclassificationwithconvolutionalneuralnetworks[C]??2015IEEE25thinterna
tionalworkshoponmachinelearningforsignalprocessing(MLSP).IEEE,2015:1 - 6.
[44] IOFFES,SZEGEDY C.Batchnormalization:Acceleratingdeepnetworktrainingbyreducinginternalcovariate
shift [C]??Internationalconferenceonmachinelearning.PMLR,2015:448 - 456.
[45] MACCAGNOA,MASTROPIETRO A,MAZZIOTTA U,etal.A CNN approachforaudioclassificationincon
structionsites [M]??ProgressesinArtificialIntelligenceandNeuralSystems.Springer,Singapore,2021:371 - 381.
[46] KINGMADP,BAJ.Adam:Amethodforstochasticoptimization[J].arXivpreprintarXiv:1412.6980,2014.
(下转第 1072页)
0
— 1 6 3 —